French, asked by ANGELNIVI, 1 year ago

{\textbf{Subject : Mathematics}}

{\textbf{Chapter : Tangency}}


A point P is 16 cm from the centre of the circle. The length of tangent drawn from P to the circle is 12 cm. Find the radius of the circle.​

Answers

Answered by GhaintMunda45
0

Hey !

______________________________

ɢɪᴠᴇɴ : ᴘ ɪs ᴀ ᴘᴏɪɴᴛ ᴀᴛ ᴅɪsᴛᴀɴᴄᴇ ᴏғ 16ᴄᴍ ғʀᴏᴍ ᴛʜᴇ ᴄᴇɴᴛʀᴇ ᴏғ ᴀ ᴄɪʀᴄʟᴇ ᴏ. ᴛʜᴇ ʟᴇɴɢᴛʜ ᴏғ ᴛᴀɴɢᴇɴᴛ ᴅʀᴀᴡɴ ғʀᴏᴍ ᴘ ᴛᴏ ᴛʜᴇ ᴄɪʀᴄʟᴇ ɪs 12 ᴄᴍ.

ɪᴛ ɪs ʀᴇǫᴜɪʀᴇᴅ ᴛᴏ ᴍᴇᴀsᴜʀᴇ ᴛʜᴇ ʀᴀᴅɪᴜs ᴏғ ᴛʜᴇ ᴄɪʀᴄʟᴇ.

ɴᴏᴡ, ∠ᴏᴛᴘ= 90°

( ∵ ᴀ ᴛᴀɴɢᴇɴᴛ ᴛᴏ ᴀ ᴄɪʀᴄʟᴇ ɪs ⊥ ᴛᴏ ᴛʜᴇ ʀᴀᴅɪᴜs ᴛʜʀᴏᴜɢʜ ᴛʜᴇ ᴘᴏɪɴᴛ ᴏғ ᴄᴏɴᴛᴀᴄᴛ).

∴ ɪɴ ʀɪɢʜᴛ ᴀɴɢʟᴇ ᴛʀɪᴀɴɢʟᴇ ᴏᴛᴘ,

ᴏᴘ² = ᴏᴛ²+ ᴛᴘ²

ᴏʀ, 16² = ᴏᴛ² + (12)²

ᴏʀ, 256-144 = ᴏᴛ²

ᴏʀ, 112 = ᴏᴛ²

∴ ᴏᴛ = 10.89 ᴄᴍ

ʜᴇɴᴄᴇ, ʀᴀᴅɪᴜs = 10.89 ᴄᴍ

______________________________

Thanks !

Answered by ShahzebSheikh
0

Given:- A point P is 16 cm from the centre of the circle. The length of tangent drawn from P to the circle is 12 cm.

To find :- The radius of the circle.

Finding:-

Let the point of contact be "t" i.e., PT = 12cm

"O"be the centre and PO = 16cm

Length of radius ( TO ) be "r".

                             

So,

       PT ⊥ TO

      ∡ PTO = 90°

∴ ΔPTO is a right angled triangle.

So, by pythagoras theorem, we have

         PO² = PT² + TO²

    ⇒  16² = 12² + TO²

    ⇒  256 = 144 + TO²

    ⇒  TO² =  256 - 144

    ⇒  TO² = 112

                 =√122

                 = 11.04 approx.

                           

∴ Radius = 11cm.

                                   

Similar questions