A point P is 16 cm from the centre of the circle. The length of tangent drawn from P to the circle is 12 cm. Find the radius of the circle.
Answers
Hey !
______________________________
ɢɪᴠᴇɴ : ᴘ ɪs ᴀ ᴘᴏɪɴᴛ ᴀᴛ ᴅɪsᴛᴀɴᴄᴇ ᴏғ 16ᴄᴍ ғʀᴏᴍ ᴛʜᴇ ᴄᴇɴᴛʀᴇ ᴏғ ᴀ ᴄɪʀᴄʟᴇ ᴏ. ᴛʜᴇ ʟᴇɴɢᴛʜ ᴏғ ᴛᴀɴɢᴇɴᴛ ᴅʀᴀᴡɴ ғʀᴏᴍ ᴘ ᴛᴏ ᴛʜᴇ ᴄɪʀᴄʟᴇ ɪs 12 ᴄᴍ.
ɪᴛ ɪs ʀᴇǫᴜɪʀᴇᴅ ᴛᴏ ᴍᴇᴀsᴜʀᴇ ᴛʜᴇ ʀᴀᴅɪᴜs ᴏғ ᴛʜᴇ ᴄɪʀᴄʟᴇ.
ɴᴏᴡ, ∠ᴏᴛᴘ= 90°
( ∵ ᴀ ᴛᴀɴɢᴇɴᴛ ᴛᴏ ᴀ ᴄɪʀᴄʟᴇ ɪs ⊥ ᴛᴏ ᴛʜᴇ ʀᴀᴅɪᴜs ᴛʜʀᴏᴜɢʜ ᴛʜᴇ ᴘᴏɪɴᴛ ᴏғ ᴄᴏɴᴛᴀᴄᴛ).
∴ ɪɴ ʀɪɢʜᴛ ᴀɴɢʟᴇ ᴛʀɪᴀɴɢʟᴇ ᴏᴛᴘ,
ᴏᴘ² = ᴏᴛ²+ ᴛᴘ²
ᴏʀ, 16² = ᴏᴛ² + (12)²
ᴏʀ, 256-144 = ᴏᴛ²
ᴏʀ, 112 = ᴏᴛ²
∴ ᴏᴛ = 10.89 ᴄᴍ
ʜᴇɴᴄᴇ, ʀᴀᴅɪᴜs = 10.89 ᴄᴍ
______________________________
Thanks !
Given:- A point P is 16 cm from the centre of the circle. The length of tangent drawn from P to the circle is 12 cm.
To find :- The radius of the circle.
Finding:-
Let the point of contact be "t" i.e., PT = 12cm
"O"be the centre and PO = 16cm
Length of radius ( TO ) be "r".
So,
PT ⊥ TO
∡ PTO = 90°
∴ ΔPTO is a right angled triangle.
So, by pythagoras theorem, we have
PO² = PT² + TO²
⇒ 16² = 12² + TO²
⇒ 256 = 144 + TO²
⇒ TO² = 256 - 144
⇒ TO² = 112
=√122
= 11.04 approx.
∴ Radius = 11cm.