Math, asked by Arceus02, 9 months ago

\tt{\underline{\boxed{\red{Question:-}}}}
\sf{If\:{40}^{a}\:=\:2,\:{40}^{b}\:=\:4,\:then\:find\:the\:value\:of}
\sf{{10}^{\Bigg\lgroup\dfrac{1\:-\:a\:-\:b}{2(1\:-\:b)}\Bigg\rgroup}}

Answers

Answered by Anonymous
19

AnswEr :

Given that,

 \sf \:  {40}^{a}  = 2 -  -  -  -  -  -  - (1) \\  \sf  {40}^{b}  = 4 -  -  -  -  - (2)

We know that, 4 = 2²

 \implies \sf \:  {40}^{b}  =  {2}^{2}

Using (1),

 \implies \sf \:  {40}^{b}  =  { {40}^{} }^{2a}

Since, the bases are equal.

 \star \:  \boxed{ \boxed{ \sf \: 2a = b}}

Consider equation (1),

 \implies \sf \:  {40}^{a}  =  {2}^{}

Taking log on both sides of the equation,

 \longrightarrow \sf \: a log(40)  =  log(2)  \\  \\  \longrightarrow \sf \: a =  \dfrac{ log(2) }{ log(40) }  \\  \\  \longrightarrow \sf \: a \sim \: 0.20

Simplifying the exponent,

 \implies \sf \:  \dfrac{1 - a - b}{2(1 - b)}  \\  \\  \implies \sf \:  \dfrac{1 - a - 2a}{2(1 - 2a)}  \\  \\  \implies \sf \:  \dfrac{1 - 3a}{2 - 4a}  \\  \\  \implies \sf \:  \dfrac{1 - 0.6}{2 - 0.8}  \\  \\  \implies \sf \:  \dfrac{0.4}{1.2}  \\  \\  \implies \sf \:  \dfrac{1}{3}

Thus,

 \implies \sf \:  {10}^{ \frac{1}{3} }  \\  \\  \implies  \sf \:  2.15


Steph0303: Great Answer :)
Anonymous: Thank you!
Answered by Anonymous
1

Answer:

\tt{\underline{\boxed{\red{Question:-}}}}

\sf{If\:{40}^{a}\:=\:2,\:{40}^{b}\:=\:4,\:then\:find\:the\:value\:of}

\sf{{10}^{\Bigg\lgroup\dfrac{1\:-\:a\:-\:b}{2(1\:-\:b)}\Bigg\rgroup}}

AnswEr :

Given that,

 \begin{gathered}\sf \: {40}^{a} = 2 - - - - - - - (1) \\ \sf {40}^{b} = 4 - - - - - (2)\end{gathered}

40

a

=2−−−−−−−(1)

40

b

=4−−−−−(2)

We know that, 4 = 2²

 \implies \sf \: {40}^{b} = {2}^{2}⟹40

b

=2

2

Using (1),

 \implies \sf \: {40}^{b} = { {40}^{} }^{2a}⟹40

b

=40

2a

Since, the bases are equal.

 \star \: \boxed{ \boxed{ \sf \: 2a = b}}⋆

2a=b

Consider equation (1),

\implies \sf \: {40}^{a} = {2}^{}⟹40

a

=2

Taking log on both sides of the equation,

 \begin{gathered}\longrightarrow \sf \: a log(40) = log(2) \\ \\ \longrightarrow \sf \: a = \dfrac{ log(2) }{ log(40) } \\ \\ \longrightarrow \sf \: a \sim \: 0.20\end{gathered}

⟶alog(40)=log(2)

⟶a=

log(40)

log(2)

⟶a∼0.20

Simplifying the exponent,

 \begin{gathered}\implies \sf \: \dfrac{1 - a - b}{2(1 - b)} \\ \\ \implies \sf \: \dfrac{1 - a - 2a}{2(1 - 2a)} \\ \\ \implies \sf \: \dfrac{1 - 3a}{2 - 4a} \\ \\ \implies \sf \: \dfrac{1 - 0.6}{2 - 0.8} \\ \\ \implies \sf \: \dfrac{0.4}{1.2} \\ \\ \implies \sf \: \dfrac{1}{3}\end{gathered}

2(1−b)

1−a−b

2(1−2a)

1−a−2a

2−4a

1−3a

2−0.8

1−0.6

1.2

0.4

3

1

Thus,

[tex] \begin{gathered}\implies \sf \: {10}^{ \frac{1}{3} } \\ \\ \implies \sf \: 2.15\end{gathered} [/tex}

⟹10

3

1

⟹2.15

Similar questions