Math, asked by Anonymous, 2 days ago

\underline{\underline{\rm{\dotplus\: Question\::-}}}
\purple\dashrightarrow\sf{If \:  tanA + sinA = m \: and  \: tanA-sinA=n,show \: that \:  {m}^{2}  -  {n}^{2}  =  \sqrt{mn}}

Answers

Answered by mathdude500
16

Appropriate Question

\sf \: If \: tanA + sinA = m \: and \: tanA-sinA=n \\  \sf \: show \: that \: {m}^{2} \:  -  \: {n}^{2}  \: =  \: 4 \: \sqrt{mn} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:m = tanA + sinA

and

\rm :\longmapsto\:n = tanA - sinA

Now, Consider

\rm :\longmapsto\: {m}^{2} -  {n}^{2}

On substituting the values of m and n, we get

\rm \:  =  \:  \:  {(tanA + sinA)}^{2} -  {(tanA - sinA)}^{2}

We know

\boxed{ \bf{ \:  {(x + y)}^{2} -  {(x - y)}^{2}  = 4xy}}

So, using this identity, we get

\rm \:  =  \:  \: 4 \: tanA \: sinA

\bf\implies \: {m}^{2} -  {n}^{2} = 4 \: tanA \: sinA -  -  - (1)

Now, Consider

\rm :\longmapsto\:4 \sqrt{mn}

On substituting the values of m and n, we get

\rm \:  =  \:  \: 4 \sqrt{(tanA + sinA)(tanA - sinA)}

We know,

\boxed{ \bf{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}

So, using this identity we get,

\rm \:  =  \:  \: 4 \sqrt{ {tan}^{2}A -  {sin}^{2}A }

\rm \:  =  \:  \: 4 \sqrt{ \dfrac{ {sin}^{2} A}{ {cos}^{2} A}  -  {sin}^{2}A }

\rm \:  =  \:  \: 4 \sqrt{ \bigg(\dfrac{1}{ {cos}^{2} A}  -  1\bigg){sin}^{2}A }

We know,

\boxed{ \bf{ \:  \frac{1}{cosx} = sinx}}

So, using this

\rm \:  =  \:  \: 4 \sqrt{ \bigg( {sec}^{2}A   -  1\bigg){sin}^{2}A }

We know,

\boxed{ \bf{ \:  {sec}^{2}x -  {tan}^{2}x = 1}}

So, using this, we get

\rm \:  =  \:  \: 4 \sqrt{ {tan}^{2} A \times  {sin}^{2} A}

\rm \:  =  \:  \: 4tanA \: sinA

\bf\implies \:4 \sqrt{mn}  = 4 \: tanA \: sinA -  -  - (2)

From equation (1) and (2), we concluded that

\boxed{ \bf{ \:  {m}^{2} -  {n}^{2} = 4 \sqrt{mn}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions