Physics, asked by navomisr9, 9 months ago

The acceleration of a particle is give by a=x, where x is position. If the particle starts at origin from rest, find its distance from origin after time t

Answers

Answered by harshvalaki
0

Answer:

The distance from the origin will be x.

Explanation:

x =  \frac{1}{2} a {t}^{2}

Answered by shadowsabers03
4

Here the acceleration of the particle is numerically equal to its position with time.

\longrightarrow\sf{a=x}

Since acceleration is the first derivative of displacement,

\longrightarrow\sf{\dfrac{dv}{dt}=x}

Or,

\longrightarrow\sf{\dfrac{dv}{dx}\cdot\dfrac{dx}{dt}=x}

Here the term \sf{\dfrac{dx}{dt}} is the rate of change of position of the particle, i.e., its velocity. Then,

\longrightarrow\sf{v\cdot\dfrac{dv}{dx}=x}

\longrightarrow\sf{v\ dv=x\ dx}

Integrating,

\displaystyle\longrightarrow\sf{\int v\ dv=\int x\ dx}

\displaystyle\longrightarrow\sf{\dfrac{v^2}{2}=\dfrac{x^2}{2}}

\displaystyle\longrightarrow\sf{v^2=x^2}

\displaystyle\longrightarrow\sf{v=\pm x}

Since velocity is the first derivative of displacement.

\displaystyle\longrightarrow\sf{\dfrac{dx}{dt}=\pm x}

\displaystyle\longrightarrow\sf{\pm\,\dfrac{1}{x}\ dx=dt}

Integrating,

\displaystyle\longrightarrow\sf{\pm\int\dfrac{1}{x}\ dx=\int dt}

\displaystyle\longrightarrow\sf{\pm\ln|x|=t}

\displaystyle\longrightarrow\sf{\ln|x|=\pm t}

Here \sf{t\geq0} and \sf{\ln|x|\ \textgreater\ 0.} Then,

\displaystyle\longrightarrow\sf{\ln|x|=t}

\displaystyle\longrightarrow\sf{\underline{\underline{x=e^t}}}

Similar questions