Math, asked by nanu4464, 1 year ago

The acute angle between the curves xy = 2, y2 = 4x is​

Answers

Answered by Anonymous
10

Answer:

Step-by-step explanation:

tan iy will be the measure of the angle


genius6636: hi
Answered by talasilavijaya
0

Answer:

The acute angle between the given curves is​ approximately 71^{o}.

Step-by-step explanation:

Given the curves xy = 2    ...(1)

                    and  y^{2}  = 4x  ​...(2)

Differentiating equation (1) w.r.t x,

                    xy = 2\implies x\frac{dy}{dx} +y\frac{dx}{dx} =\frac{d(2)}{dx}

                                 \implies x\frac{dy}{dx} +y =0

                                 \implies xm_{1} +y =0

where m_{1} is the slope given by, m_{1} =\frac{-y}{x}

Similarly, differentiating equation (2) w.r.t x,

                    y^{2}  = 4x\implies 2y\frac{dy}{dx} =4\frac{dx}{dx}

                                 \implies 2y\frac{dy}{dx} =4

                                 \implies 2ym_{2} =4

where m_{1} is the slope given by, m_{2} =\frac{4}{2y}=\frac{2}{y}

Angle between the two curves is given by

                                \theta=tan^{-1}\Big( \frac{m_{1}- m_{2}}{1+m_{1} m_{2}} \Big)

Substituting the values of slopes,

                               \theta=tan^{-1}\Big( \frac{\frac{-y}{x} -\frac{2}{y} }{1+{\frac{-{y}}{x}\frac{2}{y} }}  \Big)=tan^{-1}\Big( \frac{\frac{-y^{2}-2x}{xy} }{{\frac{xy-2y}{xy}\ }} \Big)

                                  =tan^{-1}\Big( {\frac{-y^{2} -2x}{xy-2y} }{} \Big)

                                  =tan^{-1}\Big( {\frac{-y^{2} -2x}{y(x-2)} }{} \Big)                  ...(3)

To find the values of x\  \&\  y, consider the given equations,  

             from xy = 2\implies x=\frac{2}{y}                            ...(4)

     and from y^{2}  = 4x\implies x=\frac{y^{2}}{4}                          ...(5)

Equating equations (4) and (5)      

              \frac{2}{y}= \frac{y^{2}}{4}\implies y^{3}=8 \implies y=2

    then value of x=\frac{2}{y} =\frac{2}{2}=1

Substituting the values of x\  \&\  y in equation (3),

                          \theta=tan^{-1}\Big( {\frac{-y^{2} -2x}{y(x-2)} }{} \Big)=tan^{-1}\Big( {\frac{-2^{2} -2\times 1}{2(1-2)} }{} \Big)

                            =tan^{-1}( {3 } )

                            \approx 71^{o}

Therefore, the acute angle between the curves is​ approximately 71^{o}.

Similar questions