Math, asked by mandalahomesh, 10 days ago

the adjacent sides of parallelogram are 4a, 3a. the angle b/w them is 60, then one of the diagonal of the parallelogram? ​

Attachments:

Answers

Answered by Cynefin
135

Required Answer:-

Two adjacent sides and the respective diagonal makes a triangle and here, we have the length of two sides and the angle between them.

By using cosine law,

(Refer to the attachment)

➙ d² = (4a)² + (3a)² - 2×4a×3a×cos 60°

➙ d² = 16a² + 9a² - 24a² × 1/2

➙ d² = 25a² - 12a²

➙ d² = 13a²

➙ d = √(13a²)

➙ d = a√13

d ≈ 3.61 a (Ans)

One of the diagonal will have length 3.61a. Similarly you can find the length of other diagonal with the included angle as 120°.

Attachments:
Answered by SƬᏗᏒᏇᏗƦƦᎥᎧƦ
140

Information provided with us:

  • Adjacent sides of parallelogram are 4a and 3a
  • Angle between them is 60⁰

What we have to calculate:

  • We have to calculate the diagonals of that parallelogram

Options given:

  1. √13a
  2. 2√3a
  3. 5√3a
  4. 3√3a

Using Formula,

The Law of Cosines:-

  • \large{ \dag}   \underline{\boxed{ \sf{\large{c {}^{2} = a {}^{2}   + b {}^{2}  - 2ab(cosC) }}}}

Where,

  • a , b , and c are the sides of parallelogram

Solution:

  • As here we have been given with two sides those are 4a and 3a. In the above given formula c is third side of parallelogram which we are going to find out by substituting the values of a and b. Remember that b is 3a and a is 4a

We know that,

  •  \red{ \boxed{ \tt{cos \: 60 {}^{0}  \:  =  \:  \dfrac{1}{2} }}}

Substituting the values,

 : \longmapsto \:  \sf{c {}^{2} \:  =  \: (4a) {}^{2}   + (3a) {}^{2} - 2(4a)(3a) \times  \dfrac{1}{2}  }

 : \longmapsto \:  \sf{c {}^{2} \:  =  \: (4a) {}^{2}   + (3a) {}^{2} - 2 \times (4a) \times (3a) \times  \dfrac{1}{2}  }

: \longmapsto \:  \sf{c {}^{2} \:  =  \: (4a) {}^{2}   + (3a) {}^{2} - 2 \times 4a \times 3a \times  \dfrac{1}{2}  }

: \longmapsto \:  \sf{c {}^{2} \:  =  \: (4a \times 4a)  + (3a \times 3a) - 2 \times 4a \times 3a \times  \dfrac{1}{2}  }

 : \longmapsto \:  \sf{c {}^{2} \:  =  \: (16a {}^{2} )  + (9a {}^{2} ) - 2 \times 4a \times 3a \times  \dfrac{1}{2}  }

: \longmapsto \:  \sf{c {}^{2} \:  =  \: 16a {}^{2}   + 9a {}^{2}  - 2 \times 4a \times 3a \times  \dfrac{1}{2}  }

 : \longmapsto \:  \sf{c {}^{2} \:  =  \: 16a {}^{2}   + 9a {}^{2}  - 8a \times 3a \times  \dfrac{1}{2}  }

 :\longmapsto \:  \sf{c {}^{2} \:  =  \: 16a {}^{2}   + 9a {}^{2}  - 24a {}^{2} \times  \dfrac{1}{2}  }

 : \longmapsto \:  \sf{c {}^{2} \:  =  \: 16a {}^{2}   + 9a {}^{2}  -  \cancel{24a} {}^{2} \times  \dfrac{1}{ \cancel{2}}  }

: \longmapsto \:  \sf{c {}^{2} \:  =  \: 16a {}^{2}   + 9a {}^{2}  -  12a {}^{2}  \times 1  }

: \longmapsto \:  \sf{c {}^{2} \:  =  \: 16a {}^{2}   + 9a {}^{2}  -  12a {}^{2}  }

: \longmapsto \:  \sf{c {}^{2} \:  =  \: 16a {}^{2}   \:  -  \: 3a {}^{2}  }

 :\longmapsto \:  \sf{c {}^{2} \:  =  \: 13a {}^{2}   }

:\longmapsto \:  \sf{c  \:  =  \:   \sqrt{ 13a {}^{2}   }}

 :\longmapsto \:  \sf{c  \:  =  \:   \sqrt{ 13a  }}

 \underline{\bf{Henceforth, \: one \: of \: the \: diagonals \: is \: \sqrt{13a}}}


Cynefin: Awesome! :D
Similar questions