Math, asked by abcd1853, 9 months ago

The ages of Hari and Harry are in ratio5:7.four years from now the ratio of their ages will be 3:4.find their
present ages.

Answers

Answered by Anonymous
13

\Large{\underline{\underline{\mathfrak{\bf{Question}}}}}

The ages of Hari and Harry are in ratio 5:7 . After four years , now the ratio of their ages will be 3:4 . find their present ages.

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\Large{\underline{\mathfrak{\bf{Given}}}}

  • The ages of Hari and Harry are in ratio 5:7
  • After four years now the ratio of their ages will be 3:4 .

\Large{\underline{\mathfrak{\bf{Find}}}}

  • Present ages of Hari and Harry

\Large{\underline{\underline{\mathfrak{\bf{Explanation}}}}}

Let,

  • Age of Hari = x years
  • Age of Harry = y years

A/c to question ,

( The ages of Hari and Harry are in ratio 5:7 )

\mapsto\sf{\:\dfrac{x}{y}\:=\:\dfrac{5}{7}} \\ \\ \mapsto\sf{\:7x\:-5y\:=\:0.........(1)}

Again,

( After four years now the ratio of their ages will be 3:4 )

\mapsto\sf{\:\dfrac{x+4}{y+4}\:=\:\dfrac{3}{4}} \\ \\ \mapsto\sf{\:4(x+4)\:=\:3(y+4)} \\ \\ \mapsto\sf{\:4x\:-\:3y\:=\:12\:-\:16} \\ \\ \mapsto\sf{\:4x\:-\:3y\:=\:-4.......(2)}

multiply by 4 in equ(1) and 7 in equ(2)

  • 28x - 20y = 0
  • 28x - 21y = - 28

Subtract this,

\mapsto\boxed{\sf{\:y\:=\:28}}

keep value in equ(1) ,

\mapsto\sf{\:7x\:-5\times 28\:=\:0} \\ \\ \mapsto\sf{\:7x\:=\:140} \\ \\ \mapsto\sf{\:x\:=\:\dfrac{140}{7}} \\ \\ \mapsto\boxed{\sf{\:x\:=\:20}}

\Large{\underline{\mathfrak{\bf{Thus}}}}

  • Age of Hari (x) = 20 years
  • Age of Harry (y) = 28 years
Answered by Alcaa
5

Present age of Hari is 20 years

Present age of Harry is 28 years.

Step-by-step explanation:

Let the Present age of Hari be x years

and the Present age of Harry be y years.

  • First condition states that the ages of Hari and Harry are in ratio 5 : 7, that means;

                                 \frac{x}{y} = \frac{5}{7}

                                 x=\frac{5y}{7}  ---------------- [Equation 1]

  • Second condition states that four years from now the ratio of their ages will be 3 : 4, that means;

                         

                                   \frac{x+4}{y+4} =\frac{3}{4}

                            4(x+4) =3(y+4)  

                             4x+16=3y+12

                             4x-3y=12-16

                              4x-3y=-4

Now, putting value of x from equation 1 into the above equation, we get;

                              4 \times \frac{5y}{7} -3y = -4

                               \frac{20y}{7} -3y = -4

                                \frac{20y-21y}{7}  = -4

                                   \frac{-y}{7}  = -4

                                    y=7 \times 4 = 28 years

So, putting value of y in equation 1, we get;

                         x=\frac{5\times 28}{7}

                        x={5\times 4} = 20 years

Hence, Present age of Hari is 20 years and Present age of Harry is 28 years.

Similar questions