Math, asked by Nitu7422, 10 months ago

The altitude of right triangle is 7cm less than its base. If, hypotenuse is 13 cm. Find the other two sides.​

Answers

Answered by Anonymous
2

\huge\underline\mathbb{SOLUTION:-}

\mathsf {Let,\:base\:of\:triangle\:be\:x}

\mathsf {And, \:Let\:altitude\:of\:triangle\:be\:(x - 7)\:Cm}

\mathsf {It\:is\:given\:that\:hypotenuse\:of\:triangle\:is\:13\:Cm}

\underline \texttt {According\:to\:Pythagoras\:Theorem,}

\mathsf {13^2 = x^2 + (x - 7)^2 \: \:(a + b)^2 = a^2 + b^2 + 2ab}

\implies \mathsf {169 = x^2 + x^2 + 49 - 14x}

\implies \mathsf {169 = 2x^2 - 14x + 49}

\implies \mathsf {2x^2 - 14x - 120 = 0}

\underline \texttt {Dividing\:equation\:by\:2}

\implies \mathsf {x^2 - 7x - 60 = 0}

\implies \mathsf {x^2 - 12x + 5x - 60 = 0}

\implies \mathsf {X(x - 12) + 5(x -12) = 0}

\implies \mathsf {(x - 12) (x + 5}

\implies \mathsf {x = -5,\:12}

\mathsf {We\:discard\:x = -5\:because\:length\:of\:side\:of}

\mathsf {triangle\:cannot\:be\:negative.}

\therefore \mathsf \blue {Base\:of\:triangle = 12\:Cm}

\mathsf \blue {Altitude\:of\:triangle = (x - 7) = 12 - 7 = 5\:Cm}

Answered by Anonymous
3

Answer:

Let,baseoftrianglebex

\mathsf {And, \:Let\:altitude\:of\:triangle\:be\:(x - 7)\:Cm}And,Letaltitudeoftrianglebe(x−7)Cm

\mathsf {It\:is\:given\:that\:hypotenuse\:of\:triangle\:is\:13\:Cm}Itisgiventhathypotenuseoftriangleis13Cm

\underline \texttt {According\:to\:Pythagoras\:Theorem,}

AccordingtoPythagorasTheorem,

\mathsf {13^2 = x^2 + (x - 7)^2 \: \:(a + b)^2 = a^2 + b^2 + 2ab}13

2

=x

2

+(x−7)

2

(a+b)

2

=a

2

+b

2

+2ab

\implies \mathsf {169 = x^2 + x^2 + 49 - 14x}⟹169=x

2

+x

2

+49−14x

\implies \mathsf {169 = 2x^2 - 14x + 49}⟹169=2x

2

−14x+49

\implies \mathsf {2x^2 - 14x - 120 = 0}⟹2x

2

−14x−120=0

\underline \texttt {Dividing\:equation\:by\:2}

Dividingequationby2

\implies \mathsf {x^2 - 7x - 60 = 0}⟹x

2

−7x−60=0

\implies \mathsf {x^2 - 12x + 5x - 60 = 0}⟹x

2

−12x+5x−60=0

\implies \mathsf {X(x - 12) + 5(x -12) = 0}⟹X(x−12)+5(x−12)=0

\implies \mathsf {(x - 12) (x + 5}⟹(x−12)(x+5

\implies \mathsf {x = -5,\:12}⟹x=−5,12

\mathsf {We\:discard\:x = -5\:because\:length\:of\:side\:of}Wediscardx=−5becauselengthofsideof

\mathsf {triangle\:cannot\:be\:negative.}trianglecannotbenegative.

\therefore \mathsf \blue {Base\:of\:triangle = 12\:Cm}∴Baseoftriangle=12Cm

\mathsf \blue {Altitude\:of\:triangle = (x - 7) = 12 - 7 = 5\:Cm}Altitudeoftriangle=(x−7)=12−7=5Cm

Step-by-step explanation:

hope it will help you. .........

Similar questions