The altitude of right triangle is 7cm less than its base. If, hypotenuse is 13 cm. Find the other two sides.
Answers
Answer:
Let,baseoftrianglebex
\mathsf {And, \:Let\:altitude\:of\:triangle\:be\:(x - 7)\:Cm}And,Letaltitudeoftrianglebe(x−7)Cm
\mathsf {It\:is\:given\:that\:hypotenuse\:of\:triangle\:is\:13\:Cm}Itisgiventhathypotenuseoftriangleis13Cm
\underline \texttt {According\:to\:Pythagoras\:Theorem,}
AccordingtoPythagorasTheorem,
\mathsf {13^2 = x^2 + (x - 7)^2 \: \:(a + b)^2 = a^2 + b^2 + 2ab}13
2
=x
2
+(x−7)
2
(a+b)
2
=a
2
+b
2
+2ab
\implies \mathsf {169 = x^2 + x^2 + 49 - 14x}⟹169=x
2
+x
2
+49−14x
\implies \mathsf {169 = 2x^2 - 14x + 49}⟹169=2x
2
−14x+49
\implies \mathsf {2x^2 - 14x - 120 = 0}⟹2x
2
−14x−120=0
\underline \texttt {Dividing\:equation\:by\:2}
Dividingequationby2
\implies \mathsf {x^2 - 7x - 60 = 0}⟹x
2
−7x−60=0
\implies \mathsf {x^2 - 12x + 5x - 60 = 0}⟹x
2
−12x+5x−60=0
\implies \mathsf {X(x - 12) + 5(x -12) = 0}⟹X(x−12)+5(x−12)=0
\implies \mathsf {(x - 12) (x + 5}⟹(x−12)(x+5
\implies \mathsf {x = -5,\:12}⟹x=−5,12
\mathsf {We\:discard\:x = -5\:because\:length\:of\:side\:of}Wediscardx=−5becauselengthofsideof
\mathsf {triangle\:cannot\:be\:negative.}trianglecannotbenegative.
\therefore \mathsf \blue {Base\:of\:triangle = 12\:Cm}∴Baseoftriangle=12Cm
\mathsf \blue {Altitude\:of\:triangle = (x - 7) = 12 - 7 = 5\:Cm}Altitudeoftriangle=(x−7)=12−7=5Cm
Step-by-step explanation: