Physics, asked by gopisrinivas, 10 months ago

The amplitude of a simple pendulum is 10 cm. When the
pendulum is at a displacement of 4 cm from the mean position,
the ratio of kinetic and potential energies at that point is,
5.25
(2) 2.5
(3) 4.5
(4) 7.5
(1)​

Answers

Answered by mddilshad11ab
48

\rm\large\underline{Given:}

  • \rm{The\: amplitude\:af\:\:a\: pendulum=10cm}
  • \rm{The\: pendulum\:is\:at\:a\: displacement=4cm}

\rm\large\underline{To\: Find:}

  • \rm{The\: ratio\:of\:KE\:and\:PE\:at\:that\: point}

\rm\large\underline{Solution:}

  • By applying formula of kinetic energy and potential energy than simplify the ratio]

\rm\large\underline{Formula\:Used:}

\rm{\implies K.E=\frac{1}{2}\:m\omega^2(A^2-x^2)}

\rm{\implies P.E=\frac{1}{2}\:m\omega^2\:x^2}

Here,

  • P.E=Potential energy
  • K.E=Kinetic energy
  • A=Amplitude of pendulum
  • X=Displacement (from the mean position)

\rm{\implies Ratio=\dfrac{K.E}{P.E}}

\rm{\implies K.E:P.E}

\rm{\implies \frac{1}{2}\:m\omega^2(A^2-x^2):\frac{1}{2}\:m\omega^2\:x^2}

\rm{\implies Ratio\:_{k.e:p.e}=\dfrac{A^2-x^2}{x^2}}

\rm{\implies Ratio\:_{k.e:p.e}=\dfrac{10^2-4^2}{4^2}}

\rm{\implies Ratio\:_{k.e:p.e}=\dfrac{100-16}{16}}

\rm{\implies Ratio\:_{k.e:p.e}=\dfrac{84}{16}}

\rm{\implies Ratio\:_{k.e:p.e}=\dfrac{21}{4}}

\rm\large{Hence,}

\rm{\implies Ratio\:_{kinetic\: energy: potential\: energy}=21:4}

Similar questions