Math, asked by hikayeptho4366, 7 months ago

the angles of a quadrilateral are in the ratio 6:8:10:12 find the measure of all the angles​

Answers

Answered by jayant11june
4

Answer:

60, 80, 100, 120

Step-by-step explanation:

let the angles of quadrilaterals be 6x, 8x, 10x, 12x

we know that,

sum of all angles of quardrilateral is 360

6x + 8x + 10x + 12x = 360 \\ 36x = 360 \\ x = 360 \div 36 \\ x = 10

now the angle = 6x= 6×10=60

8x = 8×10 = 80

10x = 10 ×10 = 100

12x = 12 × 10 = 120

please mark as brainliest and thanks

Answered by Anonymous
3

Տ -

The measure of angles is -

  • 6x = 6 × 10 = 60°
  • 8x = 8 × 10 = 80°
  • 10x = 10 × 10 = 100°
  • 12x = 12 × 10 = 120°

TIO -

Let the common multiple be x

\blue{\underline{\underline{\mathscr{Therefore,}}}}

6x + 8x + 10x + 12x = 360° ........... [Angle-sum Property]

36x = 360°

x  = ( \frac{360}{6} ) { }^{o}

x = 10

\green{\underline{\underline{\mathscr{Therefore,\:the \:angles\: are -}}}}

  • 6x = 6 × 10 = 60°
  • 8x = 8 × 10 = 80°
  • 10x = 10 × 10 = 100°
  • 12x = 12 × 10 = 120°

HoPe iT HeLpS YoU ♥️♥️♥️

Similar questions