Math, asked by rubyadav2003, 9 months ago

the area of a triangle is equal to the area of a square whose each side measure 10 cm.find the length of the side of a triangle corresponding to the altitude measuring 5m​

Answers

Answered by Brâiñlynêha
8

\huge\mathbb{SOLUTION:-}

  • Given that the area of triangle is equal to the area if square

  • and the side of square is 10cm

  • First find the area of square

\boxed{\sf{Area\:of \: Square=side {}^{2}}}

\sf\implies Area\:of\:square= (10){}^{2}\\ \\ \sf\implies Area\:of\: square=100cm{}^{2}

  • Now we have to find the base of triangle
  • and the altitude is given

\boxed{\sf{Area\:of\: triangle=\frac{1}{2}\times base\times height}}

\sf\underline{ Area\:of\: triangle=100cm{}^{2}}

  • Let the base of triangle be x

  • and height=5cm

\sf\implies 100=\frac{1}{2}\times x\times 5\\ \\ \sf\implies 100\times 2=5x\\ \\ \sf\implies \cancel{\frac{200}{5}}=x\\ \\ \sf\implies 40=x\\ \\ \sf\implies x=40cm

\underline{\boxed{\sf{Side\:of\: triangle=40cm}}}

Answered by Aɾꜱɦ
3

Answer:

\small\underline\textsf{\orange{Side} \blue{of }\red{triangle} = \purple{40cm}}

\large\underline\textsf{To Find }

\small\textsf{the\: length \:of \:the\: side \:of \:a\: triangle   }

\huge\underline\textsf{Explantion:- }

\leadsto\bf area \: of \: square = (10) {}^{2}

\leadsto\bf area \: of \: square = 100cm {}^{2}

\huge\underline\textsf{  Formula\: Used}

\boxed{\bf\red{Area \: of \: Base =  \frac{1}{2}  \times base \times Hieght}}

\implies\bf area \: of \: triangle = 100cm {}^{2}

\small\underline\textsf{ suppose the base of triangle \red{be Y}}

\small\underline\textsf{hieght=5}

 \rule{300}{2}

\leadsto\sf100  =  \frac{1}{2}  \times y \times 5

\leadsto\sf 100 \times 2 = 5y

\leadsto\sf \frac{\cancel{200}}{\cancel5} \\

\leadsto\sf40 = y

\leadsto\sf y = 40cm

\underline{\underline{\underline{\boxed{\boxed{\boxed{\bf{ The \:side\: of \:Triangle \:= 40cm}}}}}}}

Similar questions