Math, asked by infinixlegend12345, 6 months ago

the area of an equilateral triangle is 16root3 m square .Find the height of the triangle

Answers

Answered by prince5132
21

GIVEN :-

  • The area of Equilateral ∆ = 16√3 m².

TO FIND :-

  • The height of the equilateral ∆.

SOLUTION :-

As we know that the area of equilateral triangle is given by,

 \\  :  \implies \displaystyle \sf \: Area_{(Equilateral  \: \triangle)} =   \frac{ \sqrt{3} }{4}  \times (side) ^{2}  \\  \\  \\

  :  \implies \displaystyle \sf \:16 \sqrt{3}  =  \frac{ \sqrt{3} }{4}  \times (side) ^{2}  \\  \\  \\

  :  \implies \displaystyle \sf \:4 \times 16 \sqrt{3}  =  \sqrt{3}  \times (side) ^{2} \\  \\  \\

  :  \implies \displaystyle \sf \:64 \sqrt{3}  =  \sqrt{3}  \times (side) ^{2}  \\  \\  \\

  :  \implies \displaystyle \sf \:(side) ^{2}  =  \frac{64 \sqrt{3} }{ \sqrt{3} }  \\  \\  \\

  :  \implies \displaystyle \sf \:(side) ^{2}  = 64 \\  \\  \\

 :  \implies \displaystyle \sf \:side =  \sqrt{64}  \\  \\  \\

 :  \implies \underline{ \boxed{ \displaystyle \sf \:side = 8 \: cm}} \\

Now,

 \\

★ Base of equilateral ∆ = Side of equilateral ∆.

Now as we know that,

 \\  :  \implies \displaystyle \sf \: Area_{(Equilateral  \: \triangle)} = \frac{1}{2}  \times base \times height \\  \\  \\

:  \implies \displaystyle \sf \:16 \sqrt{3}  =  \frac{1}{2}  \times 8 \times height \\  \\  \\

:  \implies \displaystyle \sf \:16 \sqrt{3}  = 4 \times height \\  \\  \\

:  \implies \underline{ \boxed{ \displaystyle \sf \:height = 4\sqrt{3} \: m. }}


MяƖиνιѕιвʟє: Awesome
ButterFliee: Nice!
Glorious31: Great !
prince5132: thanks you :)
Answered by Anonymous
120

\underline{\underline{\sf{\clubsuit \:\:Question}}}

  • The area of equilateral Triangle is 16√3 m² . Find the height of the triangle

\underline{\underline{\sf{\clubsuit \:\:Given}}}

  • The area of equilateral Triangle = 16√3 m²

\underline{\underline{\sf{\clubsuit \:\:To\:Find}}}

  • Height of the triangle

\underline{\underline{\sf{\clubsuit \:\:Answer}}}

\boxed{\bigstar\:\:\:\sf{Height\:\:of\:\:Equilateral\:\:Triangle\:\:=\:\:4\sqrt{3}\:m}}

\underline{\underline{\sf{\clubsuit \:\:Calculations}}}

We know :

\boxed{\boxed{\bf{Area\:\:of\:\:Equilateral\:\:Triangle\:\:=\:\:\dfrac{\sqrt{3}}{4}\times a^2\:\:sq.units}}}

Firstly we need to find value of "a" for finding the height of the triangle .

\bf{Area\:\:of\:\:Equilateral\:\:Triangle\:\:=\:\:\dfrac{\sqrt{3}}{4}\times a^2\:\:sq.units}

\implies\sf{16\sqrt{3} \:\:m^2\:\:=\:\:\dfrac{\sqrt{3}}{4}\times a^2}

Divide both sides by √3

\implies\sf{\dfrac{16\sqrt{3}}{\sqrt{3}} \:\:m^2\:\:=\:\:\dfrac{\sqrt{3}}{4}\times a^2\:\div \:\sqrt{3}}

\implies\sf{16\:\:m^2\:\:=\:\:\dfrac{\sqrt{3}}{4}\times a^2\:\times \:\dfrac{1}{\sqrt{3}}}

\implies\sf{16\:\:m^2\:\:=\:\:\dfrac{1}{4}\times a^2}

Multiplying both sides by 4

\implies\sf{16\:\:m^2\times\:4\:\:=\:\:\dfrac{1}{4}\times a^2\:\times\:4}

\implies\sf{64\:\:m^2\:\:=\:\:1\times a^2}

\implies\sf{64\:\:m^2\:\:=\:\:a^2}

\implies\sf{\sqrt{64\:\:m^2}\:\:=\:\:\sqrt{a^2}}

\implies\sf{8\:\:m\:\:=\:\:a\:\:}

a = 8m

Also :

\boxed{\boxed{\bf{Height\:\:of\:\:Equilateral\:\:Triangle\:\:=\:\:\dfrac{\sqrt{3}}{2}\times a\:\:sq.units}}}

\implies\sf{Height\:\:of\:\:Equilateral\:\:Triangle\:\:=\:\:\dfrac{\sqrt{3}}{2}\times 8m}

\implies\sf{Height\:\:of\:\:Equilateral\:\:Triangle\:\:=\:\:\sqrt{3}\times 4m}

\boxed{\implies\sf{Height\:\:of\:\:Equilateral\:\:Triangle\:\:=\:\:4\sqrt{3}\:m}}


MяƖиνιѕιвʟє: Fabulous
ButterFliee: Nice!
prince5132: godd !
nikitasingh79: Nice..
Glorious31: Good !
ItzArchimedes: Awesome :)
MisterIncredible: Good
Anonymous: Great!
Similar questions