Math, asked by kumarr73092, 10 months ago

the area of an equilateral triangle is 4√3 cm its perimeter is​

Answers

Answered by Anonymous
42

SOLUTION:-

Given:

The area of an equilateral ∆ is 4√3cm.

So,

We know that, area of an equilateral ∆ is;

 =  >  \frac{ \sqrt{3} }{4}  {a}^{2}

Therefore,

 =  >  \frac{ \sqrt{3} }{4}  {a}^{2}  = 4 \sqrt{3}  \\  \\  =  >   {a}^{2}  =  \frac{4 \sqrt{3} \times 4 }{ \sqrt{3} }  \\  \\  =  >  {a}^{2}  = 16 \\  \\  =  > a =  \sqrt{16}  \\  \\  =  > a = 4cm

Now,

Perimeter of ∆ is = 3× side

=) 3 × 4cm

=) 12cm

Hope it helps ☺️

Answered by Anonymous
18

 \huge {\fcolorbox {red} {pink}{HOLA...!!}}

 Area \:of \:equilateral \:triangle = \frac {\sqrt {3}{a}^{2}} {4}

 =  > 4 \sqrt{3}  =  \frac{ \sqrt{3}  {a}^{2} }{4}  \\  \\  =  > 16 \sqrt{3} =  \sqrt{3}   {a}^{2}  \\  \\  =  >  \frac{16 \sqrt{3} }{ \sqrt{3} }  =  {a}^{2} \\  \\   =  > a =  \sqrt{16}  \\  \\ =>a = 4 \: cm

 Perimeter \:of \:triangle = 3×a

 =  > 3 \times 4 \\  \\  =  > 12 \: cm

 </b ></font >

 \large {\fcolorbox {red} {pink} {HOPE \:IT \:HELPS}}

Similar questions