The area of trapezium is 248sq.M and its height is 8m if one of the parallel side is smalller than the other by 4m find two parallel sides
Answers
Answer:-
Given:-
The area of trapezium is 248m² and its height is 8m. It one of the parallel side is smaller than the other by 4m.
To find:'
The two sides of the trapezium.
The two sides of the trapezium.Explanation:
The two sides of the trapezium.Explanation:We have,
The two sides of the trapezium.Explanation:We have,Area of trapezium= 248m²
The two sides of the trapezium.Explanation:We have,Area of trapezium= 248m²Height of the trapezium= 8m
A/q
Let the length of one of the parallel side be R m
Let the length of one of the parallel side be R mLet the length of other parallel side be (R- 4)m
Let the length of one of the parallel side be R mLet the length of other parallel side be (R- 4)mWe know that formula of the area of trapezium:
\
∗(R+R−4)∗8=248
∗(R+R−4)∗8=248=
∗(R+R−4)∗8=248= 2
∗(R+R−4)∗8=248= 21
∗(R+R−4)∗8=248= 21
∗(R+R−4)∗8=248= 21 (2R−4)∗8=248
∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248
∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)=
∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4
∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248
∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248
∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248
∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62
∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4
∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66
∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66=R=
∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66=R= 2
∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66=R= 266
∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66=R= 266
∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66=R= 266
∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66=R= 266 =R=33m
∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66=R= 266 =R=33m
∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66=R= 266 =R=33m
∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66=R= 266 =R=33m Thus,
∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66=R= 266 =R=33m Thus,The length of one of the parallel side,R= 33m
∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66=R= 266 =R=33m Thus,The length of one of the parallel side,R= 33mThe length of other of the parallel side, (33-4)m= 29m.