Math, asked by shuaibmirzadl2967, 1 year ago

The area of trapezium is 248sq.M and its height is 8m if one of the parallel side is smalller than the other by 4m find two parallel sides

Answers

Answered by siddhishukla123
3
I hope this is correct and if it helped you please mark it brainliest
Attachments:
Answered by abhinavraj980161
3

Answer:-

Given:-

The area of trapezium is 248m² and its height is 8m. It one of the parallel side is smaller than the other by 4m.

To find:'

The two sides of the trapezium.

The two sides of the trapezium.Explanation:

The two sides of the trapezium.Explanation:We have,

The two sides of the trapezium.Explanation:We have,Area of trapezium= 248m²

The two sides of the trapezium.Explanation:We have,Area of trapezium= 248m²Height of the trapezium= 8m

A/q

Let the length of one of the parallel side be R m

Let the length of one of the parallel side be R mLet the length of other parallel side be (R- 4)m

Let the length of one of the parallel side be R mLet the length of other parallel side be (R- 4)mWe know that formula of the area of trapezium:

=\frac{1}{2} *(sum\:of\:base)*height= </u></p><p><u>[tex]=\frac{1}{2} *(sum\:of\:base)*height= 2</u></p><p><u>[tex]=\frac{1}{2} *(sum\:of\:base)*height= 21

∗(sumofbase)∗height

\

begin{gathered}=\:\frac{1}{2} *(R+R-4)*8=248\\\\=\:\frac{1}{2} (2R-4)*8=248\\\\=\:1(2R-4)4=248\\\\=\:(2R-4)=\frac{248}{4} \\\\=\:2R-4= 62\\\\=\:2R=62+4\\\\=\:2R=66\\\\=\:R=\frac{66}{2} \\\\=\:R=33m\end{gathered} </u></p><p><u>[tex]begin{gathered}=\:\frac{1}{2} *(R+R-4)*8=248\\\\=\:\frac{1}{2} (2R-4)*8=248\\\\=\:1(2R-4)4=248\\\\=\:(2R-4)=\frac{248}{4} \\\\=\:2R-4= 62\\\\=\:2R=62+4\\\\=\:2R=66\\\\=\:R=\frac{66}{2} \\\\=\:R=33m\end{gathered} = </u></p><p><u>[tex]begin{gathered}=\:\frac{1}{2} *(R+R-4)*8=248\\\\=\:\frac{1}{2} (2R-4)*8=248\\\\=\:1(2R-4)4=248\\\\=\:(2R-4)=\frac{248}{4} \\\\=\:2R-4= 62\\\\=\:2R=62+4\\\\=\:2R=66\\\\=\:R=\frac{66}{2} \\\\=\:R=33m\end{gathered} = 2</u></p><p><u>[tex]begin{gathered}=\:\frac{1}{2} *(R+R-4)*8=248\\\\=\:\frac{1}{2} (2R-4)*8=248\\\\=\:1(2R-4)4=248\\\\=\:(2R-4)=\frac{248}{4} \\\\=\:2R-4= 62\\\\=\:2R=62+4\\\\=\:2R=66\\\\=\:R=\frac{66}{2} \\\\=\:R=33m\end{gathered} = 21

∗(R+R−4)∗8=248

∗(R+R−4)∗8=248=

∗(R+R−4)∗8=248= 2

∗(R+R−4)∗8=248= 21

∗(R+R−4)∗8=248= 21

∗(R+R−4)∗8=248= 21 (2R−4)∗8=248

∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248

∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)=

∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4

∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248

∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248

∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248

∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62

∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4

∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66

∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66=R=

∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66=R= 2

∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66=R= 266

∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66=R= 266

∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66=R= 266

∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66=R= 266 =R=33m

∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66=R= 266 =R=33m

∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66=R= 266 =R=33m

∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66=R= 266 =R=33m Thus,

∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66=R= 266 =R=33m Thus,The length of one of the parallel side,R= 33m

∗(R+R−4)∗8=248= 21 (2R−4)∗8=248=1(2R−4)4=248=(2R−4)= 4248 =2R−4=62=2R=62+4=2R=66=R= 266 =R=33m Thus,The length of one of the parallel side,R= 33mThe length of other of the parallel side, (33-4)m= 29m.

Similar questions