English, asked by divaker2886, 3 months ago

The base of triangle is 4m and height is 3m find its area

Answers

Answered by Anonymous
12

Given :-

  • Base and height

To find :-

  • Area

Formula used :-

  \boxed{{   \mathfrak{Area = \dfrac{1}{2} \times b \times h}}}

Required answer :-

 \sf  \implies \dfrac{1}{2}  \times 4 \times 3 \\  \\ \sf  \implies\dfrac{1}{2}  \times12\\  \\ \sf  \implies6 \\  \\  \therefore \blue{ \bf{ Area  \: of \:  triangle = 6m }}

Figure :-

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1, 0)(1,0)(3,3)\qbezier(5,0)(5,0)(3,3)\qbezier(5,0)(1,0)(1,0)\put(2.85,3.2){$\bf A$}\put(0.5,-0.3){$\bf C$}\put(5.2,-0.3){$\bf B$}\end{picture}

Answered by WaterPearl
47

 { \large{\sf{\pmb{Given}}}}

  • Base = 4m
  • Height = 3m

 { \large{\sf{\pmb{To\: Find }}}}

  • Area

 { \large{\sf{\pmb{Formula\: Used }}}}

  •  \sf \pmb{ \dfrac{1}{2} \times b \times h}

 { \large{\sf{\pmb{Solution}}}}

 : \longrightarrow \: {\sf{ \dfrac{1}{2}  \times 4 \times 3}}

\\

 : \longrightarrow \: {\sf{ \dfrac{1}{2}  \times 12}}

\\

 : \longrightarrow \: {\underline{\sf{\blue{6}}}}

\\

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin {minipage}{9cm}\\ \dag\quad \small\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}\end{gathered}\end{gathered}\end{gathered}

Similar questions