Math, asked by FairyFlosss, 6 months ago

The bisector of ∠B and ∠C intersect each other at a point O. Prove that ∠BOC = 90° + ½ ∠A​

Answers

Answered by llAloneSameerll
22

\huge{\underline{\underline{\sf{\orange{</p><p>Question:-}}}}}

The bisector of ∠B and ∠C intersect each other at a point O. Prove that ∠BOC = 90° + ½ ∠A

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge{\underline{\underline{\sf{\orange{</p><p>Solution:-}}}}}

{\blue{\sf\underline{Given}}}

A ∆ABC in which BO and CO are the bisector of ∠B and ∠C respectively.

{\pink{\sf\underline{To\:Prove}}}

\angle \: BOC \:  = (90\degree +  \frac{1}{2} \angle \: a). \\

{\blue{\sf\underline{Proof}}}

We know that the sum of the angles of a triangle is 180°.

\therefore \: \angle \: A + \angle \: B + \angle \: C = 180\degree

 ⇒  \frac{1}{2} \angle \: A +  \frac{1}{2} \angle \: B +  \frac{1}{2} \angle \: C = 90\degree \\

 ⇒  \frac{1}{2} \angle \: A + \angle \: OBC + \angle \: OCB = 90\degree \\

 ⇒ \angle \: OBC + \angle \: OCB = (90\degree -  \frac{1}{2} \angle \: A) \:  \:  \:  \:  \:   \:  \:  \: \: ...(i) \\

Now, in ∆OBC,we have

\angle \: OBC + \angle \: OCB + \angle \: BOC \:  = 180\degree \\  \:  \:  \: \:  \:  \:  \:  \:  \:   \: (sum \: of \: the \: angles \: of \: a \: triangle)

 ⇒ (90\degree -  \frac{1}{2} \angle \: A) + \angle \: BOC = 180\degree \:  \:  \:  \: [using \: (i)</p><p>] \\

 ⇒ \angle \: BOC \:  = 180\degree - (90\degree -  \frac{1}{2} \angle \: A) = (90\degree \:  +  \frac{1}{2} \angle \: A). \\

hence \: \angle \: BOC = (90\degree +  \frac{1}{2} \angle \: A).

━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions