Math, asked by wwwharshit8354, 11 months ago

the centroid and circumcentre of triangle is3,3 and 6,2respectively find orthocentre​

Answers

Answered by purnimarajput105
0

Answer:

Kya Kya question puchte Ho yarr

Answered by karangupta96
0

Step-by-step explanation:

In any triangle, orthocentre, centroid and circumcentre are

collinear and centroid divides the line joining orthocentre and circumcenter in

the ratio 2 : 1.

Let the orthocentre be (x,y) (x,y)

Using the section formula, if a point

(x,y)(x,y) divides the line joining the points ({ x }_{ 1 },{ y }_{ 1 })(x

1

,y

1

) and

({ x }_{ 2 },{ y }_{ 2 })(x

2

,y

2

) in the ratio m:n m:n, then $$(x,y) = \left(

\dfrac { m{ x }_{ 2 } + n{ x }_{ 1 } }{ m + n } ,\dfrac { m{ y }_{ 2 } + n{

y }_{ 1 } }{ m + n } \right) $$

Substituting $$({ x }_{ 1 },{ y }_{

1 }) = (x,y) and and({x }_{ 2 },{ y }_{ 2 }) = (6,2) and and m = 2, n

= 1 in the section formula, we get the centroid inthesectionformula,wegetthecentroid = \left( \dfrac {

2(6) + 1(x) }{ 2 +1 } ,\dfrac { 2(2) + 1(y) }{ 2 + 1 } \right) =

=\left( \dfrac { x + 12 }{ 3 } ,\dfrac { y + 4 }{ 3} \right) $$

Given

centroid = (3,3) =(3,3)

=> \left( \dfrac { x + 12 }{ 3 } ,\dfrac { y + 4 }{ 3} \right) = (3,3) =>(

3

x+12

,

3

y+4

)=(3,3)

=> \dfrac { x + 12 }{ 3 } = 3 ; \dfrac { y + 4 }{ 3} = 3 =>

3

x+12

=3;

3

y+4

=3

x + 12 = 9 ; y + 4 = 9 x+12=9;y+4=9

x = -3 ; y = 5 x=−3;y=5

Hence, orthocentre = (-3,5) =(−3,5)

Similar questions