Math, asked by joyjain1896, 11 months ago

The circumference of the base of a 10 m height conical tent is 44 metres. Calculate the length of canvas used in making the tent if width of canvas is 2 m. (Use π=22/7).

Answers

Answered by amirgraveiens
6

The length of canvas used in making the tent is 134.2721 m.

Step-by-step explanation:

Given:

Circumference of the base = 44 m

height conical tent, h = 10 m

width of canvas is 2 m

Now, we know that

Circumference = 2πr

44=2\times \frac{22}{7}\times r

r = \frac{44\times 7}{22 \times 2}

r = 7 m

We also know that

l^2=r^2+h^2

l = \sqrt{7^2+10^2}

l = \sqrt{49+100

l=\sqrt{149} m

Now,

Curved surface area of canvas = πrl

                                                   = \frac{22}{7}\times 7\times \sqrt{149}

                                                   = 22\sqrt{149}

So, the length of canvas used in making the tent = \frac{Area of canvas}{Width of canvas}      

                                                                                 = \frac{22\sqrt{149} }{2}             [given]

                                                                                  = 11\sqrt{149}

                                                                                  = 11 \times 12.2065

                                                                                 = 134.2721 m (approx)

                   

Similar questions