The circumference of the base of a right circular cone is 22cm and its slant height is 8cm. Its curved surface area is: i. 100cm2 ii. 90cm2 iii. 88cm2 iv. 77cm2
Answers
Answer:
The volume of the cone is 102.66 cm³.
Step-by-step explanation:
Given : The circumference of the base of a right circular cone is 22 cm. If the height be 8 cm.
To find : The volume of cone ?
Solution :
Circumference of the base of cylinder is
C=2\pi rC=2πr
22=2\times \frac{22}{7}\times r22=2×722×r
r=\frac{22\times 7}{2\times 22}r=2×2222×7
r=3.5r=3.5
The radius is 3.5 cm.
Volume of a cylinder is given by,
V=\frac{1}{3}\pi r^2hV=31πr2h
V=\frac{1}{3}\times \frac{22}{7}\times (3.5)^2\times 8V=31×722×(3.5)2×8
V=\frac{1}{3}\times \frac{22}{7}\times 12.25\times 8V=31×722×12.25×8
V=102.66\ cm^3V=102.66 cm3
Therefore, the volume is 102.66 cm³.
#Learn more
If the circumference of the base of a right circular cone and the slant height are 120π and 10 cm respectively then find the curved surface area of the cone
_________________________________
Circumference of cone(c)=22 cm
Slant height (l)=8cm
__________________________________
Curved surface of a cone=?
__________________________________
Curved surface area of a cone=πrl
radius(r)=?
Through circumference,we can find the radius
Circumference of a circular cone(c)=2πr
_________________________________
Curved surface area=πrl
supplanting the given values,
__________________________________
Option-3 is the correct one.
The curved surface area of a right circular cone =