English, asked by Anonymous, 1 month ago

The circumference of the base of a right circular cone is 22cm and its slant height is 8cm. Its curved surface area is: i. 100cm2 ii. 90cm2 iii. 88cm2 iv. 77cm2​

Answers

Answered by Sohan453
0

Answer:

The volume of the cone is 102.66 cm³.

Step-by-step explanation:

Given : The circumference of the base of a right circular cone is 22 cm. If the height be 8 cm.

To find : The volume of cone ?

Solution :

Circumference of the base of cylinder is

C=2\pi rC=2πr

22=2\times \frac{22}{7}\times r22=2×722×r

r=\frac{22\times 7}{2\times 22}r=2×2222×7

r=3.5r=3.5

The radius is 3.5 cm.

Volume of a cylinder is given by,

V=\frac{1}{3}\pi r^2hV=31πr2h

V=\frac{1}{3}\times \frac{22}{7}\times (3.5)^2\times 8V=31×722×(3.5)2×8

V=\frac{1}{3}\times \frac{22}{7}\times 12.25\times 8V=31×722×12.25×8

V=102.66\ cm^3V=102.66 cm3

Therefore, the volume is 102.66 cm³.

#Learn more

If the circumference of the base of a right circular cone and the slant height are 120π and 10 cm respectively then find the curved surface area of the cone

Answered by Anonymous
62

 \huge \rm {Answer:-}

_________________________________

 \sf \red {Given\: Data:}

Circumference of cone(c)=22 cm

Slant height (l)=8cm

__________________________________

 \sf \blue {To\: Determine:}

Curved surface of a cone=?

__________________________________

 \sf \pink {We\: Know:}

Curved surface area of a cone=πrl

radius(r)=?

Through circumference,we can find the radius

Circumference of a circular cone(c)=2πr

\large \dashrightarrow \tt {22cm=2\times{\frac{22}{7}}\times r}

\large \dashrightarrow \tt {r=\frac{22\times7}{2\times22}}

\large \dashrightarrow \tt {r=\frac{\cancel{22}\times7}{2\times{\cancel{22}}}}

\large \dashrightarrow \tt \green{r=\frac{7}{2}cm}

_________________________________

 \sf \orange {Now,}

Curved surface area=πrl

 \tt {r=\frac{7}{2}cm}

 \tt {l=8cm}

supplanting the given values,

\large \dashrightarrow \tt {\frac{22}{7}\times{\frac{7}{2}}\times8}

\large \dashrightarrow \tt {\frac{22}{\cancel{7}}\times{\frac{\cancel{7}}{\cancel{2}}}\times{\cancel{8}}^{4}}

 \dashrightarrow \tt {22\times4}

 \implies \tt \green {Curved\: surface\: area=88cm^{2}}

__________________________________

 \sf \purple {Thence}

Option-3 is the correct one.

The curved surface area of a right circular cone =  \tt {88cm^{2}}

Similar questions