Math, asked by parth2761, 3 days ago

The cost of a box of sweet chocolates and a box of bitter chocolates are in the ratio 2:3. If a box of sweet chocolates cost rupees 270, what is the, a. cost of a box of bitter chocolate b. cost of 10 boxes of bitter chocolates​

Answers

Answered by Anonymous
27

Information provided with us:

➪ The cost of a box of sweet chocolates and box of bitter chocolates are in ratio 2:3

 \\ \\

What we have to calculate :

➪ The cost of box of a bitter chocolates

➪ The cost of 10 boxes of a bitter chocolates

 \\ \qquad{\rule{200pt}{3pt}}

 \\ \\

 \red{❒} Assumption

➪ Consider the cost of box of sweet chocolates be 2 x and box of bitter chocolates be 3 x respectively

We know that

➪ The cost of box of a sweet chocolates is 270 Rs

 \pink{❒} So༄

 \red{❒} According to the above Condition given in question

 \qquad  \pink{\: \:\bigstar \:  {\underline{\overline{\boxed{\sf{Cost  \: of  \: box  \: of  \: sweet  \: chocolates  = 270 \:Rs}}}}}  \: \bigstar}

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\orange{ 2 \: x = 270}}}\: \: \: \bigstar\\

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\purple{  x =  \dfrac{270}{2} }}}\: \: \: \bigstar\\

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\red{ x= 135 \: Rs  }}}\: \: \: \bigstar\\

 \\ \qquad{\rule{200pt}{3pt}}

Now

 \qquad  \green{\: \:\bigstar \:  {\underline{\overline{\boxed{\sf{Cost  \: of  \: box  \: of  \: bitter  \: chocolates = 3 \: x }}}}}  \: \bigstar}

➪ Substitute the obtained value of x and solve

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\orange{ 3 \times (135)  }}}\: \: \: \bigstar\\

   \implies\bigstar \:  \:   \bf\boxed{\bold{\blue{405\:Rs}}}\: \: \: \bigstar\\

Henceforth

  \rm  \: Thus  \:  cost  \: of \:box \:of \:a\: bitter \: chocolates \: is

   \implies\bigstar \:  \:   \sf\boxed{\bold{\gray{405 \: Rs}}}\: \: \: \bigstar\\

 \\ \qquad{\rule{200pt}{3pt}}

Now

 \qquad  \orange{\: \:\bigstar \:  {\underline{\overline{\boxed{\sf{Cost  \: of  \:10 \:  boxes\: of  \: bitter  \: chocolates \: }}}}}  \: \bigstar}

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\red{ 405 \times 10  }}}\: \: \: \bigstar\\

   \implies\bigstar \:  \:   \bf\boxed{\bold{\blue{4050\:Rs}}}\: \: \: \bigstar\\

Henceforth

  \rm  \: Thus  \:  cost  \: of \:10 \: boxes \:of \:a\: bitter \: chocolates \: is

   \implies\bigstar \:  \:   \sf\boxed{\bold{\gray{4050\: Rs}}}\: \: \: \bigstar\\

Answered by Anonymous
3

Given - Ratio of box of sweet and bitter chocolates.

Find - Cost of box of sweet chocolate

Solution - a. cost of a box of bitter chocolate - Rupees 405

b. cost of 10 boxes of bitter chocolates - Rupees 4050

Let the cost of box of sweet chocolate and bitter chocolates be 2x and 3x.

Now, as per the question, 2x = 270

x = 270/2

x = 135

So, the cost of box of bitter chocolates = 3x

Cost of box of bitter chocolates = 3*135

Cost of box of bitter chocolates = Rupees 405

Cost of 10 boxes of bitter chocolates is 405*10

Cost of 10 boxes of bitter chocolates is Rupees 4050.

Similar questions