Math, asked by rakeshsharma8529, 6 months ago

The curved surface area of a cylinder is 7920 cm2 and the circumference of the base of the base is 126 cm. Find the height of the cylinder

Answers

Answered by SarcasticL0ve
64

\sf Given \begin{cases} & \sf{Curved\:surface\:area = \bf{7920\:cm^2}}  \\ & \sf{Circumference\:of\:base = \bf{126\:cm}}  \end{cases}\\ \\

To find: Height of the cylinder?

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀

☯ Let height of cylinder be h cm.

⠀⠀⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Circumference_{\;(circle)} = 2 \pi r}}}}\\ \\

:\implies\sf 2 \times \dfrac{22}{7} \times r = 126\\ \\

:\implies\sf \dfrac{44}{7} \times r = 126\\ \\

:\implies\sf r = \cancel{126} \times \dfrac{7}{ \cancel{44}}\\ \\

:\implies\sf r = 2.87 \times 7\\ \\

:\implies{\underline{\boxed{\frak{\purple{r = 20.09\:cm\:\:(approx)}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Radius\:of\:cylinder\:is\: {\textsf{\textbf{20.09\:cm}}}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

Now Given that,

⠀⠀⠀⠀

  • Curved surface area of cylinder = 7920 cm²

⠀⠀⠀⠀

\star\;{\boxed{\sf{\pink{Curved\:surface\:area_{\;(cylinder)} = 2 \pi rh}}}}\\ \\

:\implies\sf 2 \times \dfrac{22}{7} \times 20.09 \times h = 7920\\ \\

:\implies\sf \dfrac{44}{7} \times 20.09 \times h = 7920\\ \\

:\implies\sf 20.09 \times h = \cancel{7920} \times \dfrac{7}{ \cancel{44}}\\ \\

:\implies\sf 20.09 \times h = 180 \times 7\\ \\

:\implies\sf 20.09 \times h = 1260\\ \\

:\implies\sf h = \cancel{ \dfrac{1260}{20.09}}\\ \\

:\implies{\underline{\boxed{\frak{\purple{h = 62.8\:\:(approx)}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Height\:of\:cylinder\:is\: {\textsf{\textbf{62.8\:cm}}}.}}}


Anonymous: Nice ❤️
Answered by BrainlyHero420
89

Answer:

Given :-

  • The curved surface area of a cylinder is 7920 cm² and the circumference of the base is 126 cm.

To Find :-

  • What is the height of the cylinder.

Formula Used :-

\boxed{\bold{\large{Circumference\: of\: a\: circle\: =\: 2{\pi}r}}}

\boxed{\bold{\large{C.S.A\: of\: a\: cylinder\: =\: 2{\pi}rh}}}

Solution :-

Given :

  • C.S.A of a cylinder = 7920 cm²
  • Circumference of a base = 126 cm

First, we have to find the radius,

According to the question by using the formula we get,

\sf126\: =\: 2 \times \dfrac{22}{7} \times r

\sf126\: =\: \dfrac{44}{7} \times r

\sf{\cancel{126}}\: \times \dfrac{7}{\cancel{44}} =\: r

\sf2.87 \times 7 =\: r

\sf20.09 (approx) =\: r

\small\bf{\underbrace{\red{r\: =\: 20.09}}}

Hence, the radius of a cylinder is 20.09 cm .

Now, we have to find the height of a cylinder,

Given :

  • Radius of a cylinder = 20.09 cm
  • C.S.A of a cylinder = 7920 cm²

According to the question by using the formula we get,

\sf7920\: =\: 2 \times \dfrac{22}{7} \times 20.09 \times h

\sf7920\: =\: \dfrac{44}{7} \times 20.09 \times h

\sf{\cancel{7920}}\: \times \dfrac{7}{\cancel{44}} = 20.09 \times h

\sf1260\: =\: 20.09 \times h

\sf\dfrac{\cancel{1260}}{\cancel{20.09}} =\: h

\sf62.8 (approx) =\: h

\small\bf{\underbrace{\red{h\: =\: 62.8}}}

\therefore The height of a cylinder is 62.8 cm .

Similar questions