Chemistry, asked by sauravkumar28943, 4 months ago


The curved surface area of the cone with height 6cm and slant height 10 cm is(π=3.14)​

Answers

Answered by Mysterioushine
3

Given :

  • Height of a cone = 6 cm
  • Slant height = 10 cm
  • π = 3.14

To Find :

  • The Curved surface area of the cone

Solution :

The relation between Radius , slant height and height of a cone is given by ,

 \\  \star \: {\boxed{\purple{\sf{ {l}^{2} =  {r}^{2}   +  {h}^{2} }}}} \\

 \\   \sf{we \: have}\begin{cases} &\sf{slant \: height(l) = 10 \: cm} \\ & \sf{height \: (h) \:  =6 \: cm } \end{cases} \\

Substituting the values ,

 \\  :  \implies \sf \:  {(10 \: cm)}^{2}  =  {r}^{2}  +  {(6 \: cm)}^{2}  \\  \\

 \\  :  \implies \sf \: 100  \: cm {}^{2} =  {r}^{2}  + 36 \:  {cm}^{2}  \\  \\

 \\  :  \implies \sf \: 100 \:  {cm}^{2}  - 36 \:  {cm}^{2}  =  {r}^{2}  \\  \\

 \\   : \implies \sf \:  {r}^{2}  = 64  \:  {cm}^{2} \\  \\

 \\   : \implies \sf \: r =  \sqrt{64 \:  {cm}^{2} }  \\  \\

 \\   : \implies{\boxed{\red{\mathfrak{r = 8 \: cm}}}} \\  \\

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━

Now CSA of a cone is given by ,

 \\  \star \: {\boxed{\purple{\sf{CSA = \pi rl}}}} \\  \\

Substituting the values we have ,

 \\   : \implies \sf \:CSA = (3.14)(8 \: cm)(10 \: cm) \\  \\

 \\   : \implies{\underline{\boxed{\pink{\sf{ \: CSA = 251.2 \:  {cm}^{2} }}}}} \:  \bigstar \\  \\

 \\   \therefore{\underline{\sf{Hence , \:  The \:  CSA  \: of  \: the \:  cone  \: is  \:  \bold{251.2  \: cm^2}}}}

Answered by BrainlyHero420
34

Answer:

Given :-

  • A curved surface area of the cone whose height is 6 cm and slant height is 10 cm. (π = 3.14)

To Find :-

  • What is the curved surface area of the cone

Formula Used :-

\boxed{\bold{\large{l\: =\: \sqrt{{h}^{2} + {r}^{2}}}}}

\boxed{\bold{\large{C.S.A\: of\: cone\: =\: {\pi}rl}}}

Solution :-

First, we have to find the radius,

Given :

  • Height = 6 cm
  • Slant height = 10 cm

According to the question by using the formula we get,

(l)² = (h)² + (r)²

(10)² = (6)² + (r)²

100 = 36 + r²

r² = 100 - 36

r² = 64

r = \sqrt{64}

r = 8 cm

Hence, we get the value of radius is 8 cm.

Now, we have to find the value of CSA of cone,

We get,

  • Radius = 8 cm
  • Slant height = 10 cm
  • π = 3.14

According to the question by using the formula we get,

C.S.A = 3.14 × 8 × 10

CSA = 25.12 × 10

CSA = 251.2 cm²

\therefore The CSA of the cone is 251.2 cm² .

Similar questions