the curved surface of a cylinder is 264 m².its volume is 924 m³.the height of the cylinder must be:
Answers
Answered by
3
lateral surface area = 2π r h = 264 m^2
volume = π r^2 h = 924 m^3
solve for r:
r/2 = 3.5
so r = 7 m
now you can find height in terms of π !
archimedes
volume = π r^2 h = 924 m^3
solve for r:
r/2 = 3.5
so r = 7 m
now you can find height in terms of π !
archimedes
Answered by
7
Al = 264[m²] ⇔ 2rπh = 264[m²]
V = 924[m³] ⇔ r²πh = 924[m³]
⇒ V / Al = (r²πh) / (2rπh) = r / 2 = (924[m³]) / (264[m²]) = 3.5[m]
⇒ r = 2 × 3.5[m] = 7[m]
⇒ Al = 2 × 7[m] × π × h
⇒ h = (264[m²]) / (π × 14[m])
⇒ h ≈ 6[m]
V = 924[m³] ⇔ r²πh = 924[m³]
⇒ V / Al = (r²πh) / (2rπh) = r / 2 = (924[m³]) / (264[m²]) = 3.5[m]
⇒ r = 2 × 3.5[m] = 7[m]
⇒ Al = 2 × 7[m] × π × h
⇒ h = (264[m²]) / (π × 14[m])
⇒ h ≈ 6[m]
Similar questions