The diagonals AC and BD of a
parallelogram ABCD intersect each other at
the point o. If CAD = 32° and AOB = 70°,
find DBC.
Answers
Answered by
10
Answer:
Quadrilateral ABCD is a parallelogram.
So, AD ∣∣ BC
∴ ∠DAC = ∠ACB --- ( Alternate angle)
∴ ∠ACB = 32
∘
∠AOB + ∠BOC = 180
∘
--- (straight angle)
⇒70
∘
+ ∠BOC = 180
∘
∴ ∠BOC = 110
∘
In △BOC,
∠OBC + ∠BOC + ∠OCB = 180
∘
⇒∠OBC + 110
∘
+ 32
∘
= 180
∘
⇒ ∠OBC = 38
∘
∴ ∠DBC = 38
∘
Answered by
1
Step-by-step explanation:
In given figure,
Quadrilateral ABCD is a parallelogram.
So, AD ∣∣ BC
∴ ∠DAC = ∠ACB --- ( Alternate angle)
∴ ∠ACB = 32
∘
∠AOB + ∠BOC = 180
∘
--- (straight angle)
⇒70
∘
+ ∠BOC = 180
∘
∴ ∠BOC = 110
∘
In △BOC,
∠OBC + ∠BOC + ∠OCB = 180
∘
⇒∠OBC + 110
∘
+ 32
∘
= 180
∘
⇒ ∠OBC = 38
∘
∴ ∠DBC = 38
∘
Similar questions