English, asked by Anonymous, 4 months ago

the diameter of a 120 cm long roller is 84 cm It takes 1000 complete revolutions in moving once over to level a playground what is the area of the playground​

Answers

Answered by ItzCaptonMack
19

\huge\mathtt{\fbox{\red{Answer✍︎}}}

\large\underline\mathfrak{\red{GIVEN,}}

\sf\dashrightarrow \blue{height(H)= 120cm }

\sf\dashrightarrow \blue{diameter of roller= 84cm}

\sf\therefore \blue{radius= \dfrac{diameter}{2}}

\sf\dashrightarrow \blue{ \dfrac{84}{2}}

\sf\dashrightarrow \blue{\cancel \dfrac{84}{2}}

\sf\dashrightarrow  \blue{radius= 42cm}

\large\underline\mathfrak{\purple{TO\:FIND,}}

\sf\dashrightarrow \red{AREA\: OF\:PLAYGROUND }

FORMULA

\rm{\boxed{\sf{  \circ\:\: C.S.A\: OF\: CYLINDER= 2 \pi rh \:\: \circ}}}

\large\underline\mathtt{\purple{SOLUTION,}}

© ATQ,

\purple{\text{AREA COVERED BY ROLLER IN 1 REVOLUTION = PERIMETER OF ROLLER}}

\sf\therefore \pink{AREA \:COVERED \:IN\: ONE\: REVOLUTION= 2 \pi r h}

\sf\implies \red{ 2 \times \dfrac{22}{7} \times 42 \times 120}

\sf\implies \blue{ 2 \times \dfrac{22}{\cancel{7}} \times \cancel{42} \times 120}

\sf\implies \red{2 \times 22 \times 6 \times 120}

\sf\implies \blue{ 44 \times 72  }

\sf\implies \pink{ 31680cm^2 }

\rm{\boxed{\sf{ \circ\:\: 31680cm^2\:\: \circ}}}

\sf\therefore \purple{ THE\:ROLLER\:TAKES\:1000\: REVOLUTIONS  TO\:COVER\:AREA\:OF\:THAT\: PARTICULAR\:PALAYGROUND}

\sf\therefore \blue{we\: know,\: to\: complete\: one  \:revolution\: it \:takes \:31680cm^2 \:area }

\sf\therefore \red{then \:area \:of\:rectangle = 1000 \times  the \:area\: in\: one\: complete\: revolution}

\sf\implies \pink{ 1000 \times 31680  }

\sf\implies  \green{31680000cm^2}

CONVERSION,

\sf\therefore \green{cm^2 \:into\:m^2}

\sf\therefore \blue{\dfrac{ 31680000}{ 100 \times 100}}

\sf\implies \red{\cancel \dfrac{ 31680000}{ 100 \times 100}}

\sf\implies \orange{3168 m^2}

\rm{\boxed{\sf{ \circ\:\:  AREA\:OF\: PLAYGROUND= 3168m^2 \:\: \circ}}}

\rm\underline\mathrm{AREA\:OF\:PLAYGROUND\:IS\:3168cm^2}

Answered by Anonymous
1

Explanation:

Area of triangle is 5400 m².

Step-by-step explanation:

Given:-

Sides of triangle are in ratio 3:4:5.

Perimeter of triangle is 360 m.

To find:-

Area of triangle.

Solution:-

Let, Sides of triangle be 3x, 4x and 5x.

Perimeter of triangle = a+b+c

Where, a,b and c are sides of triangle.

Puting sides and perimeter of triangle.

\longrightarrow⟶ 3x + 4x + 5x = 360

\longrightarrow⟶ 12x = 360

\longrightarrow⟶ x = 360/12

\longrightarrow⟶ x = 30

Sides of triangle :-

3x = 3×30 = 90

4x = 4×30 = 120

5x = 5×30 = 150

Sides of triangle are 90m, 120m and 150m.

Area of triangle by using Heron's formula is :

Area of triangle = \bold{\sqrt{s(s-a)(s-b)(s-c)}}

s(s−a)(s−b)(s−c)

Where,

S is semi-perimeter of triangle.

a, b and c are sides of triangle.

So,

Semi-perimeter = Perimeter/2

= 360/2

= 180

Semi-perimeter of triangle is 180 m.

Area of triangle:

\longrightarrow⟶ √180(180 - 90)(180 - 60)(180 - 30)

\longrightarrow⟶ √180 × 90 × 60 × 30

\longrightarrow⟶ √29160000

\longrightarrow \purple{\boxed{\sf \bold{ 5400}} \star}⟶

5400

Therefore,

Area of triangle is 5400 m².

Similar questions