The digits of a positive number of 3 digits area in A.P. and their sum is 15. The number obtained by reversing the digit is 594 less. Find the number!!
plssss!
Answers
Answered by
5
Hello!
:-
• The digit at the tens place be .
• The digit at the hundredth place be
• The digit at the ones place be
Then,
:
(a + d) + a + (a – d) = 15
⇒ 3a = 15 ⇒ a = ⇒
Now :
⇒ (555 + 99d) – (555 - 99d) = 594
⇒ 198d = 594 ⇒ d = ⇒
Therefore,
• a = 5
• (a + d) = (5 + 3) = 8
• (a – d) = (5 – 3) = 2
Hence,
The number formed = =
Cheers!
:-
• The digit at the tens place be .
• The digit at the hundredth place be
• The digit at the ones place be
Then,
:
(a + d) + a + (a – d) = 15
⇒ 3a = 15 ⇒ a = ⇒
Now :
⇒ (555 + 99d) – (555 - 99d) = 594
⇒ 198d = 594 ⇒ d = ⇒
Therefore,
• a = 5
• (a + d) = (5 + 3) = 8
• (a – d) = (5 – 3) = 2
Hence,
The number formed = =
Cheers!
Answered by
5
let the number be ,a+d,a,a-d
a-d+a+a+d=15
a=5 ...........................i
original number=
(a-d)100+10a+a+d=111a+99d
reversed number
100(a+d)+10a+a-d=111a-99d
atq
111a-99d + 594=111a+99d
=189d=594
d=3 ................ii
from i and ii
111a+99d= 111(5) +99(3)
the number is 852
Similar questions