Physics, asked by salma7865, 7 hours ago

The displacement is given by x= t^3+2t^2+5 m, the acceleration (in m/s^2) at t=2 s is ?​

Answers

Answered by InfiniteSoul
7

\sf Given \begin {cases} & \sf { Displacement \: as \: a \: function \: of \: time \: = \: x. \: = \: t^3 + 2t^2 + 5t } \\ &\sf{Time \: = \: 2 \: sec }  \\ \end {cases}\\

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf To\: Find \begin {cases} & \sf { Acceleration \: at \: t_2 \: second \: =\: ??}  \\ \end {cases}\\

⠀⠀⠀⠀

⠀⠀⠀⠀

We know that :-

  • Instantaneous velocity = Rate of change of displacement

⠀⠀⠀⠀⠀⠀⠀

 \star\;{\boxed{\sf{\pink{\dfrac{dx}{dt} = V }}}}\\

⠀⠀⠀⠀

⠀⠀⠀⠀

:\implies\sf x = t^3+ 2t^2 + 5 \\

⠀⠀⠀⠀

:\implies\sf \dfrac{dx}{dt} = \dfrac{d\: t^3 + 2t^2 + 5 }{dt} \\

⠀⠀⠀⠀

:\implies\sf v = \dfrac{dt^3}{dt} + \dfrac{ d\: 2t^2}{dt}+ \dfrac{ d\: 5 }{dt}  \\

⠀⠀⠀⠀⠀⠀

  • Differentiation of a constant is zero .
  • Differentiation of a logarithmic function is nx^(n-1) .

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf v = 3t^{3-1} + 2\times 2t^{2-1} + 0\\

⠀⠀⠀⠀

:\implies\sf v = 3t^2 + 4t \\

⠀⠀⠀⠀

\sf :\implies{\underline{\boxed{\bold{ v = 3t^2 \:+  \: 4t }}}}\;\bigstar\\

⠀⠀⠀⠀

⠀⠀⠀⠀

  • Instantaneous acceleration = Rate of change of velocity

⠀⠀⠀⠀⠀⠀

 \star\;{\boxed{\sf{\pink{\dfrac{dv}{dt} = a }}}}\\

⠀⠀⠀⠀

⠀⠀⠀⠀

:\implies\sf a = 3t^2+ 4t \\

⠀⠀⠀⠀

:\implies\sf \dfrac{dv}{dt} = \dfrac{d\: 3t^2 + 4t }{dt} \\

⠀⠀⠀⠀

:\implies\sf a = \dfrac{d\: 3t^2}{dt} + \dfrac{ d\: 4t}{dt}  \\

⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf a = 3\times 2 t^{2-1} + 4\times 1 \:t^{1-1} \\

⠀⠀⠀⠀

:\implies\sf a = 6t + 4 \\

⠀⠀⠀⠀

\sf :\implies{\underline{\boxed{\bold{ a = 6t\: + 4 }}}}\;\bigstar\\

⠀⠀⠀⠀

  • Putting t = 2 ( given )

⠀⠀⠀⠀

:\implies\sf a = 6\times 2 + 4 \\

⠀⠀⠀⠀

:\implies\sf a = 12 + 4 \\

⠀⠀⠀⠀

:\implies\sf a = 16 \\

⠀⠀⠀⠀

\sf :\implies {\boxed{\red{\mathfrak{ Required \: acceleration \: = \: 16 m/s^2 }}}}

⠀⠀⠀⠀

⠀⠀⠀_______________________________

Similar questions