Physics, asked by nilamsinghh, 9 months ago

the displacement x of a particle moving in one dimension under the action of a constant force is related to time by the equation t=√ x + 3 where x in metre and t is in seconds the work done by the force in the first 6 seconds is​

Answers

Answered by shadowsabers03
11

The equation of motion of the particle is,

\sf{\longrightarrow t=\sqrt x+3}

\sf{\longrightarrow \sqrt x=t-3}

\sf{\longrightarrow x=(t-3)^2\quad\quad\dots(1)}

This is the displacement of the particle.

Work done by the force acting on it is,

\displaystyle\sf{\longrightarrow W=\int F\ dx}

Since the force is constant,

\displaystyle\sf{\longrightarrow W=F\int dx}

\displaystyle\sf{\longrightarrow W=F\Big[x\Big]_{x_1}^{x_2}}

[Here initial position and position after first 6 seconds are just taken as \sf{x_1} and \sf{x_2} respectively.]

From (1),

\displaystyle\sf{\longrightarrow W=F\Big[(t-3)^2\Big]_0^6}

\displaystyle\sf{\longrightarrow W=F\Big[(6-3)^2-(0-3)^2\Big]}

\displaystyle\sf{\longrightarrow W=F\Big[3^2-(-3)^2\Big]}

\displaystyle\sf{\longrightarrow W=F\Big[9-9\Big]}

\displaystyle\sf{\longrightarrow\underline{\underline{W=0\ J}}}

Similar questions