Math, asked by kudakwashechakona, 4 months ago

the equation of a curve is y=x^2-4x+7 and the equation of a line is y+3x=9. the curve and the line intersect at the points A and B.
the midpoint of AB is M. show the coordinates of M are (1/2,7 and 1/2)

Attachments:

Answers

Answered by mathdude500
2

\large\underline\blue{\bold{Given \:  Question :-  }}

  • The equation of a curve is y=x^2 - 4x + 7 and the equation of a line is y + 3x = 9.
  • The curve and the line intersect at the points A and B.
  • The midpoint of AB is M.
  • Show the coordinates of M are (1/2, 7 and 1/2)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 1 }}

☆ To calculate the point of intersection of curve and line.

\tt \:  ⟼ \: Let \: y =  {x}^{2}  - 4x + 7 \:  -  -  - (1)

\tt \:  ⟼ \: and \: Let \: y \:  = 9 - 3x \:  -  -  - (2)

☆ On substituting, equation (2) in (1), we get

\tt \:  ⟼ \:  {x}^{2}  - 4x + 7 = 9 - 3x

\tt \:  ⟼ \:  {x}^{2}  - x - 2 = 0

\tt \:  ⟼ \:  {x}^{2}  - 2x + x - 2 = 0

\tt \:  ⟼ \: x(x - 2) + 1(x - 2) = 0

\tt \:  ⟼ \: (x  - 2)(x + 1) = 0

\tt\implies \: \: x =  - 1 \: or \: x = 2

So, point of intersection are represented in table

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y  = 9 - 3x\\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf  - 1 & \sf 12 \\ \\ \sf 2 & \sf 3 \\ \\ \sf  & \sf  \end{array}} \\ \end{gathered}

\large\underline{\bold{❥︎Step :- 2 }}

\tt \:  Let  \: the \:  points \:  be \:  A(-1, 12) \:  and  \: B(2, 3)

\tt \:  So,  \: midpoint \:  M  \: of \:  AB = (\dfrac{ - 1 + 2}{2}  ,\dfrac{3 + 12}{2}  )

\tt \:  ⟼ \: midpoint  \: M  \: of  \: AB = (\dfrac{1}{2}  , \dfrac{15}{2} )

\tt\implies \:So, coordinates \: of \:  M  = ( \dfrac{1}{2} , 7\dfrac{1}{2} )

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions