Math, asked by funnynarayanpondel, 5 months ago

The formula to find area of triangle using Hero formular​

Answers

Answered by Anonymous
2

 \large{\huge{\underline \mathbb{  \overline { \mid{ \blue{Answer} \mid}}}} } \\  \\ First \:  you  \: have  \: to \:  find \:  semi perimeter \:  of  \: triangle \:  which \:  is  : -  \\  \\ \green{ \implies  \frac{side \: a \:  +  \: side \: b +  \: side \:  c}{2} }\\  \\ then \: apply \: herons \: formula \: which \: is :  -   \\  \\  \green{\implies  \sqrt{s(s - a)(s - b)(s - c)}}  \\  \\ where \: s \: is \: semi \: perimeter \: and \:  \\  \\ a, \: b \:and \: c \: are \: sides. \\ \\  \\  \\   \\ \pink{If \: it \: is \: helpfull \:mark \: it \:} \\  \\   \pink{as \: brainliest \: and \: follow \: me \: plz .  \huge\red{♡}}

Answered by Anonymous
4

Answer:

Step-by-step explanation:

\begin{gathered} \large{\huge{\underline \mathbb{ \overline { \mid{ \blue{Answer} \mid}}}} } \\ \\ First \: you \: have \: to \: find \: semi perimeter \: of \: triangle \: which \: is : - \\ \\ \green{ \implies \frac{side \: a \: + \: side \: b + \: side \: c}{2} }\\ \\ then \: apply \: herons \: formula \: which \: is : - \\ \\ \green{\implies \sqrt{s(s - a)(s - b)(s - c)}} \\ \\ where \: s \: is \: semi \: perimeter \: and \: \\ \\ a, \: b \:and \: c \: are \: sides. \\ \\ \\ \\ \\ \pink{If \: it \: is \: helpfull \:mark \: it \:} \\ \\ \pink{as \: brainliest \: and \: follow \: me \: plz . \huge\red{♡}}\end{gathered} </p><p>∣Answer

Similar questions
Math, 2 months ago