Math, asked by subulax26, 10 months ago

the fourth, seventh and tenth term of G.P are p, q, r respt. then prove that q^2 = pr​

Answers

Answered by BrainlyPopularman
39

GIVEN :

Fourth term of G.P. = p

• Seventh term of G.P. = q

• Tenth term of G.P. = r

TO PROVE :

• q² = pr

SOLUTION :

We know that nth term of G.P. is –

 \\ \longrightarrow  \large{ \boxed{ \bold{ T_{n} = a {r}^{n - 1}  }}} \\

• Here –

 \\  \:  \:  \:  \: \to  \:  \:  \:  { \bold{a = first \:  \: term}}  \\

 \\  \:  \:  \:  \: \to  \:  \:  \:   { \bold{r = common \:  \: ratio}}  \\

 \\  \:  \:  \:  \: \to  \:  \:  \:   { \bold{n=total \:  \: term}}  \\

• According to the first condition –

 \\ \implies { \bold{ T_{4} = p  }} \\

 \\ \implies { \bold{ a {r}^{4 - 1}  = p  }} \\

 \\ \implies { \bold{ a {r}^{3}  = p  \:  \:  \:  \:  \:  -  -  -  - eq.(1) }} \\

• According to the second condition –

 \\ \implies { \bold{ T_{7} = q }} \\

 \\ \implies { \bold{ a {r}^{7 - 1}  = q  }} \\

 \\ \implies { \bold{ a {r}^{6}  = q  \:  \:  \:  \:  \:  -  -  -  - eq.(2) }} \\

• According to the third condition –

 \\ \implies { \bold{ T_{10} = r }} \\

 \\ \implies { \bold{ a {r}^{10 - 1}  = r  }} \\

 \\ \implies { \bold{ a {r}^{9}  = r  \:  \:  \:  \:  \:  -  -  -  - eq.(3) }} \\

• Now Let's take L.H.S.

 \\  \:  \:  \:  { \bold{  =  {q}^{2} }} \\

 \\  \:  \:  \:  { \bold{  =  {(a {r}^{6} )}^{2} \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  [using \:  \: eq.(2)]}} \\

 \\  \:  \:  \:  { \bold{  =  {a}^{2}  {r}^{12} }} \\

• We should write this as –

 \\  \:  \:  \:  { \bold{  = ( a {r}^{3} )(a {r}^{9}) }} \\

 \\  \:  \:  \:  { \bold{  = (p)(r) \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  [using \:  \: eq.(1) \:  \: and \:  \: eq.(3)]}} \\

 \\  \:  \:  \:  { \bold{  = pr}} \\

 \\  \:  \:  \:  { \bold{  = R.H.S. \:  \:  \:  \:  \:  \:  \: (Hence \:  \: proved)}} \\

Answered by Anonymous
7

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

  • Fourth term = p
  • seventh term = q
  • tenth term = r

{\bf{\blue{\underline{To\:Prove:}}}}

  • q² = pr

{\bf{\blue{\underline{Formula\:Used:}}}}

 \dagger \:  \boxed {\sf{ T_{n} = a {r}^{n - 1}  }} \\ \\

{\bf{\blue{\underline{Now:}}}}

 : \implies{\sf{  t_{4} =  {a} {r}^{4 - 1}   }} \\ \\

 : \implies\boxed{\sf{  p=  {a} {r}^{3}   }} \\ \\

 : \implies{\sf{  t_{7} =  {a} {r}^{7 - 1}   }} \\ \\

 : \implies\boxed{\sf{  q=  {a} {r}^{6}   }} \\ \\

 : \implies{\sf{  t_{10} =  {a} {r}^{10 - 1}   }} \\ \\

 : \implies\boxed{\sf{  r=  {a} {r}^{9}   }} \\ \\

  \dagger \:  \:  \underline{\mathfrak{ according \: to \: the \: question}} \\ \\

 : \implies{\sf{  {q}^{2} =  pr}} \\ \\

Put value of p ,r and q in given condition,

 : \implies{\sf{  {( a{r}^{6} })^{2} =  a {r}^{3} \times a {r}^{9}  }} \\ \\

 : \implies{\sf{  { {a}^{2}  \times {r}^{6 \times 2} }=  a {r}^{3} \times a {r}^{9}  }} \\ \\

 : \implies{\sf{  { {a}^{2}  \times {r}^{12} }=   {a}^{2} \times   {r}^{12}  }} \\ \\

  \dagger  \:  \:  \: {\mathfrak{  \purple{hence \: proved}}} \\ \\

_____________________________________

  \bigstar \:  \:  \:   \underline{\mathfrak{ \green{ Geomatric \: Progression}}} \\ \\

  • A series in which the result of dividing any term by previous term(if any) is same ,is called G.P.
Similar questions