Physics, asked by jaya362238, 11 months ago

The fundamental frequency of a sonometer wire is n. If the length and diameter of the wire are doubled keeping the tension same, then the new fundamental frequency is pls

Answers

Answered by BrainlyPopularman
36

ANSWER :

new frequency   { \boxed { \bold { {n}_{1}  =  \frac{n}{4} }}}  \\

EXPLANATION :

GIVEN :

The fundamental frequency of a sonometer wire is n.

The length and diameter of the wire are doubled keeping the tension same.

TO FIND :

New fundamental frequency = ?

SOLUTION :

We know that frequency –

 \\  { \boxed { \bold { n =  \frac{1}{2l}  \sqrt{ \frac{T}{m} }}}}  \\

Mass per unit Length :

m = [ρΠr²(l)]/l

m = ρΠr²

So that , new equation

 \\  { \boxed { \bold { n =  \frac{1}{2(2l)}  \sqrt{ \frac{T}{ \rho  \pi {(2r)}^{2}}}}}} \\

• Now According to the question –

Length (l) => 2l and radius (r) => 2r

New fundamental frequency

 \\    { \bold { {n}_{1} =  \frac{1}{2(2l)}  \sqrt{ \frac{T}{ \rho \pi {(2r)}^{2}} }}} \\

 \\  { { \bold {  {n}_{1}  =  \frac{1}{4l}  \sqrt{ \frac{T}{4 \rho \pi {r}^{2}} }}}}  \\

 \\  { { \bold {  {n}_{1}  =  \frac{1}{2(4l)}  \sqrt{ \frac{T}{ \rho \pi {r}^{2}} }}}}  \\

 \\  { { \bold {  {n}_{1}  = \frac{1}{4} {n}  }}}  \\

 \\  { { \bold { {n}_{1}  =  \frac{n}{4} }}}  \\

Similar questions