The galvanometer deflection, when key k1 is closed but k2 is open, equals theetha
Answers
Case 1
ig=\frac{E}{220+R_{g}}=c\Theta _{0}\, \, \, \, \, \, (1)
Case 2
ig=\left ( \frac{E}{220+\frac{5R_{g}}{5+R_{g}}} \right )\frac{5}{R_{g}+5}=\frac{c\Theta _{0}}{5}\, \, \, \, \, \, (2)
\left ( 1 \right )/(2)
\Rightarrow \frac{225R_{g}+1100}{1100+5R_{g}}=5
\Rightarrow R_{g}=22\Omega
Option 1)
5 \Omega
Option 2)
12 \Omega
Option 3)
25 \Omega
Option 4)
22 \Omega
Answer:
Explanation:
Missing question :- The galvanometer deflection , when key K1 is closed but K2 is open, equals \theta _{0} (see figure). On closing K2 also and adjusting R2 to 5 \Omega , the deflection in galvanometer becomes \frac{\theta _{0}}{5} . The resistance of the galvanometer is then , given by [ Neglect the internal resistance of battery ] :
Answer :-
Equivalent Resistance = G(s) /G + s
For Case 1
ig = E / 220 + R(g) = c Ф(o) --- (1)
For Case 2
ig = ( E / 220 + (5 Rg/ 5 + Rg) ) 5 / 5 + Rg = c Ф(o)/5 .... (2)
1 divide 2 we get,
(225 Rg + 1100)/ (1100 + 5 Rg) = 5
Rg = 22 Ohms