The geometric mean of two surds is 5+ 373. If one of the surds is 7 + 413, then the square root of the other
surd is
Select one:
O a. √3-1
O b.4-2√3
O 0.4 +2√3
O d. √3+ 1
Answers
Answer:
oooo oppppppppppppppppoppoppopppppppppo
Given : The geometric mean of two surds is 5+ 3√3. one of the surds is 7 + 4√3,
To find : the square root of the other surd
O a. √3-1
O b.4-2√3
O 0.4 +2√3
O d. √3+ 1
Solution:
Let say other surd is X
Then X * ( 7 + 4√3) = ( 5 + 3√3)²
=> X = ( 5 + 3√3)² / ( 7 + 4√3)
Rationalizing denominator
=> X = ( 5 + 3√3)²( 7 -4√3) / ( 7 + 4√3)( 7 - 4√3)
( 7 + 4√3)( 7 - 4√3) = 49 - 48 = 1
=> X = ( 5 + 3√3)²( 7 -4√3)
=> X = ( 52 + 30√3) ( 7 -4√3)
=> X = 364 - 208√3 + 210√3 - 360
=> X = 4 + 2√3
=> X = 3 + 1 + 2√3
=> X = (√3)² + 1² + 2√3
=> X = (√3 + 1)²
=> √X = √3 + 1
square root of the other surd = √3 + 1
Learn More:
(a) Rationalize the denominator: 14/ 5√3 − √5 Please Send ...
brainly.in/question/5471829
Rationalise the denominator of 22/2+√3+√5 - Brainly.in
brainly.in/question/1203331