Physics, asked by devvrathchennupati, 3 months ago

The ground state energy of an electron in an infinite well is 5.6 meV. If the
width of the well is doubled, calculate the zero point energy.

Answers

Answered by Anonymous
2

Calculate the velocity and kinetic energy of an electron of wavelength 1.66 × 10 –10 m.

Sol: Wavelength of an electron (λ) = 1.66 × 10–10 m

lambda = h/ mv

put the value and u will fing velocity

then put the value of velocity in 1/ mv(square )

then u get kinetic energy .

Answered by ChitranjanMahajan
0

The Zero point energy of the given electron on doubling the width is 1.4 meV or 2.243 * 10^{-22} Joules.

Given :

Ground state energy of electron = 5.6 meV

The width of the infinite well is doubled

To Find :

The zero-point energy of the electron

Solution :

The formula for the ground state energy of an electron with plank's constant "h" and the width of the infinite well "a" is given by :

                  E = h^{2} / (8m*a^{2})

Thus, the Zero point energy i.e. E is inversely proportional to the square of the width of the infinite well.

                      Ea^{-2}

So, if the width of the well is doubled, the zero point energy decreases by a factor of 4.

The Zero-point energy thus is :

                  a_{new} = 2*a

                  E_{new}=  h^{2} / (8m*a_{new} ^{2})

                            =  h^{2} / (8m*(2*a) ^{2})

                           = (1/4) *  h^{2} / (8m*a ^{2})

                           = E/4

                           = 5.6 meV/4

                           = 1.4 meV

Converting zero-point energy to joules from meV.

             1.4 meV = 1.4 * 10^{-3} eV

                          =(1.4 * 10^{-3}) * (1.602 * 10^{-19}) J

                          = (1.6022 * 1.4) * 10^{-3-19} J

                          = 2.243 * 10^{-22}J

Hence, the zero point energy on doubling the width is 2.243 * 10^{-22}J.

 

To learn more about Zero Point Energy, visit

https://brainly.in/question/13460364

#SPJ3                                

Similar questions