Math, asked by mamillaamar1, 8 months ago

the HCF of (a3-a2x) ,(a3-ax2)and(a4-ax3) is

Answers

Answered by MaheswariS
10

\textbf{Given:}

\text{$a^3-a^2x$, $a^3-ax^2$ and $a^4-ax^3$}

\textbf{To find:}

\text{H.C.F of the given polynomials}

\textbf{Solution:}

\text{First, we factorize the given polynomials}

a^3-a^2x=a^2(a-x)=\boxed{a}{\times}a{\times}\boxed{(a-x)}

a^3-ax^2=a(a^2-x^2)=\boxed{a}{\times}\boxed{(a-x)}{\times}(a+x)

a^4-ax^3=a(a^3-x^3)=\boxed{a}{\times}\boxed{(a-x)}{\times}(a^2+ax+x^2)

\text{Finding common factors from the above factorization}

\text{H.C.F}=a{\times}(a-x)

\text{H.C.F}=a(a-x)

\textbf{H.C.F}=a^2-ax

\textbf{Answer:}

\textbf{H.C.F is $\bf\,a^2-ax$}

Similar questions