The height of two circular cones are in the ratio 1:2 and the perimeters of their bases are in the ratio 3:4. Find the ratio of their volumes
Answers
let h1 and h2 are the heights of two circular cones .
_______________________________
given , ratio of heights = 1 : 2
h1 : h2 = 1 : 2
h1 / h2 = 1 / 2
_______________________________
let r1 , r2 be the radius of the bases of circular cones.
given ratio of the perimeters of their bases
= 3 : 4
_______________________________
2 π r1 : 2 π r2 = 3 : 4
_______________________________
r1 : r2 = 3 : 4
r1 / r2 = 3 / 4
let,volume of first cone V1 =1/3 π r1^2 h1
volume of second coneV2=1 /3 πr2^2h2
_______________________________
Find ratio of volumes :
_______________________________
V1/ V2=(1 / 3 π r1^2 h1 ) / ( 1/3 π r2^2h2 )
=r1^2h1/ r2^2 h2 = ( r1/r2 )^2( h1 / h2)
_______________________________
since , r1 / r2 = 3 / 4 , and h1 / h2 = 1 / 2
_______________________________
( r1 / r2 )^2 ( h1 / h2 ) = ( 3/4)^2 (1 / 2 )
= 9 / 16 × 1 / 2 = 9 / 32 = 9 : 32
therefore ,
ratio of their volumes = 9 : 32
_______________________________
Your Answer :V1 / V2 = 9 : 32
_______________________________
Let the 2 circular cones be Cone A and Cone B.
Define x:
Height A : Height B = 1 : 2 (Given)
Let x be the constant ratio
Height A : Height B = 1x : 2x
Define y:
Perimeter A : Perimeter B = 3 : 4 (Given)
Let y be the constant ratio
Height A : Height B = 3y : 4y
Find the radius of cone A:
Perimeter = 2πr
3y = 2πr
r = 3y ÷ 2π = (3y/2π) units
Find the radius of cone B:
Perimeter = 2πr
4y = 2πr
r = 4y ÷ 2π = 4y/2π = (2y/π) units
Find the volume of Cone A:
Volume = 1/3 πr²h
Volume = 1/3 π (3y/2π)² (x)
Volume = 1/3π(9y²/4π²) (x)
Volume = ( 3xy²/4π ) unit³
Find the volume of Cone A:
Volume = 1/3 πr²h
Volume = 1/3 π (2y/π)² (2x)
Volume = 1/3 π (4y²/π²) (2x)
Volume = ( 8xy²/3π ) unit³
Find the ratio of the volume:
Volume A : Volume B = 3xy²/4π : 8xy²/3π
Multiply the ratio by 12π:
Volume A : Volume B = 9xy² : 32xy²
Divide the ratio by xy²:
Volume A : Volume B = 9 : 32
Answer: The ratio of the volume is 9 : 32