Math, asked by brijkishore19, 10 months ago

the hypotenuse of a right angle triangle is 5 metre if one of its side is 4 metre find the length of other side.
do it fast
by explaning..... ​

Answers

Answered by Brâiñlynêha
16

\huge\bf{\underline{Solution:-}}

\bf\underline{\underline{\blue{\:\:\:\:\: Given:-\:\:\:\:}}}

\sf\bullet A\:right\: triangle\\ \\ \sf\bullet hypotenuse=5m\\ \\ \sf\bullet One\:of\:its\:side=4m\\ \\ \\ \sf\:\:\:\:\:Find\:the\:length\:of\:other\:side:-

\sf{\purple{\:\:\:\:\:\:\:Now\:by\: Pythagoras\:\:\:}}\\ \\ \sf{\boxed{\sf{ hypotenuse {}^{2}=Base{}^{2}+perpendicular {}^{2}}}}

\bf\underline{\underline{\red{\:\:\:\:\: A.T.Q:-\:\:\:\:}}}

\sf\implies H{}^{2}=B{}^{2}+P{}^{2}\\ \\ \sf\implies (5){}^{2}=(4){}^{2}+P{}^{2}\\ \\ \sf\implies 25=16+P{}^{2}\\ \\ \sf\implies 25-16=P{}^{2}\\ \\ \sf\implies 9=P{}^{2}\\ \\ \sf\implies P=\sqrt{9}\\ \\ \sf\implies P=3m

\boxed{\sf{length\:of\:Other\:side=3m}}

\tt\underline{formula\: related\:\triangle}

\sf\bullet Area\:of\: right\triangle=\dfrac{1}{2}\times base\times height\\ \\ \sf\bullet Area\:of\:scalene\triangle=\sqrt{s(s-a)(s-b)(s-c)}\\ \\ \sf\bullet Area\:of\: equilateral\: triangle=\dfrac{\sqrt{3}}{4}a{}^{2}

Answered by Anonymous
12

\huge\bold\green{Question}

The hypotenuse of a right angle triangle is 5 metre if one of its side is 4 metre find the length of other side

\huge\bold\green{Answer}

According to the question we have given that :-

•°• Hypotenuse = 5m

•°• One side of triangle = 4m

So , we have to find out the other side of triangle

Simply by using Pythagoras theorem we can solve it :-

\begin{lgathered} \tt\orange{\boxed{\sf{ Hypotenuse {}^{2}=Base{}^{2}+Perpendicular {}^{2}}}}\end{lgathered}

So, as said in question

\begin{lgathered}\tt= H{}^{2}=B{}^{2}+P{}^{2}\\ \\ \tt= (5){}^{2}=(4){}^{2}+P{}^{2}\\ \\ \tt= 25=16+P{}^{2}\\ \\ \tt = 25-16=P{}^{2}\\ \\ \tt = 9=P{}^{2}\\ \\ \tt = P=\sqrt{9}\\ \\ \tt\green = P=3m\end{lgathered}

Hence the length of other side is = 3 m

Similar questions