The hypotenuse of a right triangle is 6 1/2 centimetres and its area is
71/2 square centimetres. Calculate the lengths of its perpendicular sides
Answers
Answer:
Let perpendicular sides of the triangle = 'a' and 'b'.
so (1/2)×a×b=area =7 1/2
or, ab/2=15/2 , or, ab=15
again, hypotenuse^2=a^2+b^2
or, a^2+b^2=(6 1/2)^2=(13/2)^2
we know, (a+b)^2=a^2+b^2+2ab
=(13/2)^2+2×15=169/4+30=289/4
a+b=17/2……..(1)
again, (a-b)^2=a^2+b^2–2ab
=(13/2)^2–2×15=169/4–30=49/4
a-b=7/2 ………(2)
(1)+(2), → 2a=17/2+7/2=24/2=12
a=12/2=6 cm
(1)-(2) , → 2b=17/2–7/2=10/2=5
b=5/2=2.5 cm
two sides are 2.5cm and 6 cm
check:-
√(6^2+2.5^2)=√(36+25/4)= √{(144+25)/4}=√(169/4)=13/2 =6 1/2
Step-by-step explanation:
Let perpendicular sides of the triangle = 'a' and 'b'.
so (1/2)×a×b=area =7 1/2
or, ab/2=15/2 , or, ab=15
again, hypotenuse^2=a^2+b^2
or, a^2+b^2=(6 1/2)^2=(13/2)^2
we know, (a+b)^2=a^2+b^2+2ab
=(13/2)^2+2×15=169/4+30=289/4
a+b=17/2……..(1)
again, (a-b)^2=a^2+b^2–2ab
=(13/2)^2–2×15=169/4–30=49/4
a-b=7/2 ………(2)
(1)+(2), → 2a=17/2+7/2=24/2=12
a=12/2=6 cm
(1)-(2) , → 2b=17/2–7/2=10/2=5
b=5/2=2.5 cm
two sides are 2.5cm and 6 cm
check:-
√(6^2+2.5^2)=√(36+25/4)= √{(144+25)/4}=√(169/4)=13/2 =6 1/2
Step-by-step explanation:
hope it's helpful,,