Math, asked by nandanalakshmi, 4 months ago

The hypotenuse of a right triangle is 6 1/2 centimetres and its area is
71/2 square centimetres. Calculate the lengths of its perpendicular sides​

Answers

Answered by MiraculousBabe
10

Answer:

Let perpendicular sides of the triangle = 'a' and 'b'.

so (1/2)×a×b=area =7 1/2

or, ab/2=15/2 , or, ab=15

again, hypotenuse^2=a^2+b^2

or, a^2+b^2=(6 1/2)^2=(13/2)^2

we know, (a+b)^2=a^2+b^2+2ab

=(13/2)^2+2×15=169/4+30=289/4

a+b=17/2……..(1)

again, (a-b)^2=a^2+b^2–2ab

=(13/2)^2–2×15=169/4–30=49/4

a-b=7/2 ………(2)

(1)+(2), → 2a=17/2+7/2=24/2=12

a=12/2=6 cm

(1)-(2) , → 2b=17/2–7/2=10/2=5

b=5/2=2.5 cm

two sides are 2.5cm and 6 cm

check:-

√(6^2+2.5^2)=√(36+25/4)= √{(144+25)/4}=√(169/4)=13/2 =6 1/2

Step-by-step explanation:

Hope \:  it  \: helps.

Answered by Anonymous
1

Let perpendicular sides of the triangle = 'a' and 'b'.

so (1/2)×a×b=area =7 1/2

or, ab/2=15/2 , or, ab=15

again, hypotenuse^2=a^2+b^2

or, a^2+b^2=(6 1/2)^2=(13/2)^2

we know, (a+b)^2=a^2+b^2+2ab

=(13/2)^2+2×15=169/4+30=289/4

a+b=17/2……..(1)

again, (a-b)^2=a^2+b^2–2ab

=(13/2)^2–2×15=169/4–30=49/4

a-b=7/2 ………(2)

(1)+(2), → 2a=17/2+7/2=24/2=12

a=12/2=6 cm

(1)-(2) , → 2b=17/2–7/2=10/2=5

b=5/2=2.5 cm

two sides are 2.5cm and 6 cm

check:-

√(6^2+2.5^2)=√(36+25/4)= √{(144+25)/4}=√(169/4)=13/2 =6 1/2

Step-by-step explanation:

hope it's helpful,,

:-)

{ \colorbox{lightgreen}{\huge{\textbf{\textsf{{\color{red}{@}}{\red{❣}}{|}}}} \huge{\textbf{\textsf{{\color{navy}{BR}}{\purple {AI}}{\pink{NL}}{\color{pink}{Y}}}}}}} \\ { \colorbox{yellow}{\huge{\textbf{\textsf{{\color{red}{}}{\red{}}{}}}} \huge{\textbf{\textsf{{\color{navy}{}}{\purple {G}} \:   \: \:  \:  {\pink{O}} \:  \:  \:  \: {\color{pink}{D࿐}}}}}}}

Similar questions