CBSE BOARD XII, asked by S9wethars6hikaparkar, 1 year ago

The kinetic energy of the electron orbiting in the first excited state of hydrogen atom is 3.4 eV. Determine the de Broglie wavelength associated with it.

Answers

Answered by rishilaugh
27
de Broglie wavelength, λ=h/(2mE)^1/2 where h=Plank's constant=6.626×10-34 J s m=Mass of the electron=9.1×10-31 kg E=Energy of the electron=3.4 eV=3.4×1.6×10-19
J⇒λ=6.626×10-342(9.1×10-31 )(3.4×1.6×10-19)⇒λ=0.67×10-9 m
Answered by mergus
7

Answer:

Wavelength = 665.088 pm

Explanation:

The expression for the deBroglie wavelength and kinetic energy is:

\lambda=\frac {h}{\sqrt{2\times m\times K.E.}}

Where,  

\lambda is the deBroglie wavelength  

h is Plank's constant having value 6.626\times 10^{-34}\ Js

m is the mass of electron having value 9.11\times 10^{-31}\ kg

K.E. is the kinetic energy of the electron.

Given, K.E. = 3.4 eV

Energy in eV can be converted to energy in J as:

1 eV = 1.6022 × 10⁻¹⁹ J

So, K.E. = 3.4\times 1.6022\times 10^{-19}\ J=5.44748\times 10^{-19}\ J

Applying in the equation as:

\lambda=\frac {h}{\sqrt{2\times m\times K.E.}}

\lambda=\frac{6.626\times \:10^{-34}}{\sqrt{2\times \:\:9.11\times \:\:10^{-31}\times \:\:5.44748\times \:\:10^{-19}\:}}\ m

\lambda==\frac{10^{-34}\times \:6.626}{\sqrt{10^{-50}\times \:99.2530856}}\ m

\lambda=665.088\times 10^{-12}\ m

Also, 1 m = 10¹² pm

So, Wavelength = 665.088 pm

Similar questions