The largest number which
divides 7o and 125 Heaving
remainders 5 and
respectively is
8
Answers
Answered by
1
☆ ÀnSwEr ☆:
cosA=5/13
sinA=-√(1-cos^2A) (since theta is in 4th quadrant)
i.e. sinA=-√144/169
=-12/13
tanB=-15/8
sinB=+(15)/√{(-15)^2+(8)^2} (B is in Q2)
i.e. sinB=15/17
cosB=tanB/sinB
i.e. cosB=-15/8 * 17/15
cosB=17/8
now
sin(A+B)=sinAcosB+cosAsinB
sin(A+B)=(-12/13)(17/8)+(5/13)(15/17)
={1/13}(-51/2 + 75/17)
=(1/13)(-710/34)
=-710/442
please make a brain list answer
Similar questions