Math, asked by utkarshsaroj2010, 11 months ago

The least common multiple of two numbers is 168 and highest

common factor of them is 12. If the difference between the numbers

is 60, what is the sum of the numbers?
no spammming
give explanation

Answers

Answered by mythu67
5

Answer:

108

Step-by-step explanation:

HCF = 168

LCM = 12

Difference = 60

Let the numbers be 'X' and 'Y'

So, X - Y = 60

⇒  X = 60 + Y

Wkt, HCF x LCM = X x Y          

⇒ 168 x 12 = ( 60 + Y )( Y )          [Plugging in all the values]

⇒ 2016 = 60Y + Y²

⇒ Y² + 60Y - 2016 = 0

Now, by using quadratic formula

⇒ Y = [-b ± √(b² - 4ac)] / 2a

⇒ Y = [ -60 ± √( 3600 + 8064) ] / 2

⇒ Y = [ -60 ± √( 11664) ] / 2

⇒ Y = [ -60 ± 108 ] / 2

By taking 'Y = [ -60 + 108 ] / 2', we have

⇒ Y = [ -60 + 108 ] / 2

⇒ Y = [ 48 ] / 2

⇒ Y = 24

By taking 'Y = [ -60 - 108 ] / 2', we have

⇒ Y = [ -60 - 108 ] / 2

⇒ Y = [ -168 ] / 2

⇒ Y = -84

Now we have to find the value of X

X = 60 + Y

⇒ X = 60 + 24 or X = 60 - 84

⇒ X = 84 or -24

So the values of X and Y could be 84 & 24 or -24 & -84

Since we usually don't choose negative values, we should take the first pair, i.e, X = 84 and Y = 24

So the sum will be 84 + 24 = 108

Hope this helped! Sorry if it is complicated

         

Answered by rashmilcusp
0

Answer:

108

Step-by-step explanation:

HCF = 168

LCM = 12

Difference = 60

Let the numbers be 'X' and 'Y'

So, X - Y = 60

⇒  X = 60 + Y

Wkt, HCF x LCM = X x Y          

⇒ 168 x 12 = ( 60 + Y )( Y )          [Plugging in all the values]

⇒ 2016 = 60Y + Y²

⇒ Y² + 60Y - 2016 = 0

Now, by using quadratic formula

⇒ Y = [-b ± √(b² - 4ac)] / 2a

⇒ Y = [ -60 ± √( 3600 + 8064) ] / 2

⇒ Y = [ -60 ± √( 11664) ] / 2

⇒ Y = [ -60 ± 108 ] / 2

By taking 'Y = [ -60 + 108 ] / 2', we have

⇒ Y = [ -60 + 108 ] / 2

⇒ Y = [ 48 ] / 2

⇒ Y = 24

By taking 'Y = [ -60 - 108 ] / 2', we have

⇒ Y = [ -60 - 108 ] / 2

⇒ Y = [ -168 ] / 2

⇒ Y = -84

Now we have to find the value of X

X = 60 + Y

⇒ X = 60 + 24 or X = 60 - 84

⇒ X = 84 or -24

So the values of X and Y could be 84 & 24 or -24 & -84

Since we usually don't choose negative values, we should take the first pair, i.e, X = 84 and Y = 24

So the sum will be 84 + 24 = 108

Hope this helped! Sorry if it is complicated

Similar questions