Math, asked by mamtagarg78, 5 months ago

The length and breadth of a rectangle are in the ratio 4: 3. If the diagonal measures 25 cm
then the perimeter of the rectangle is
(a) 56 cm
(b) 60 cm
(c) 70 cm
(d) 80 cm​

Answers

Answered by arvind1217
2

answer:

The length and breadth of a rectangle are in the ratio 4: 3. If the diagonal measures 25 cm

then the perimeter of the rectangle is

(a) 56 cm

(b) 60 cm

(c) 70 cm

(d) 80 cm

Step-by-step explanation:

Given length and breadth of a rectangle are in the ratio 4:3 And diagonal= 25 cm Let ratio in multiple of x i.e. 4x and 3x According to the Pythagoras theorem we can write as (4x)2+(3x)2=252 16x2+9x2=625 25x2=625 X2=625/25=25 x=5Read more on .com/738586/length-breadth-rectangle-ratio-the-diagonal-measures-25cm-then-the-perimeter-rectangle

Answered by prachigupta431
0

Answer:

A n s w e r

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

G i v e n

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Length and breadth of a rectangle are in the ratio 4:3

Diagonal of the rectangle is 25 cm

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

F i n d

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

The perimeter of the rectangle

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

S o l u t i o n

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Let the length of rectangle be '4z'

Let the breadth of rectangle be '3z'

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

We know that diagonal of rectangle divides the rectangle into 2 right angled triangle with diagonal as the hypotenuse

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Thus ,

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

By pythagoras theorem

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

➠ Length² + Breadth² = Hypotenuse²

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\underline{ \underline{\bold{\texttt{For the given rectangle :}}}}For the given rectangle :

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Length = 4z

Breadth = 3z

Hypotenuse = 25

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

⟮ Putting the values ⟯

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ Length² + Breadth² = Hypotenuse²

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ (4z)² + (3z)² = (25)²

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ 16z² + 9z² = 25 × 25

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ 25z² = 25 × 25

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ \sf z ^2 = \dfrac { 25 \times 25 } { 25 }z2=2525×25

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ \sf z ^2 = 25z2=25

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ \sf z = \sqrt { 25 }z=25

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ z = 5 ㅤㅤ [ Length can't be negative ]

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

So,

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ Length = 4z

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ Length = 4(5)

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ Length = 20 cm

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Hence length of rectangle is 20 cm

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ Breadth = 3z

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ Breadth = 3(5)

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ Breadth = 15 cm

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Hence breadth of rectangle is 15 cm

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\underline{ \underline{\bold{\texttt{Perimeter of rectangle :}}}}Perimeter of rectangle :

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

➠ 2(Length + Breadth)

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ 2(20 + 15)

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ 2(35)

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: : ➨ 70 cm

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Hence the perimeter of rectangle is 70 cm

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

∴ Option c) 70 cm is correct

Similar questions