Math, asked by suyashdubey5858, 10 months ago

The length of a rectangle is twice its width. The perimeter is 30. Find its dimensions.(Use either Matrix inversion method orCramer’sRule)

Answers

Answered by shadowsabers03
3

Let the width of the rectangle be x and the length of rectangle be y.

Since length is twice its width,

\longrightarrow y=2x

\longrightarrow 2x-y=0\quad\quad\dots(1)

And since perimeter is 30,

\longrightarrow 2(x+y)=30

\longrightarrow x+y=15\quad\quad\dots(2)

Thus we form a matrix equation from (1) and (2) as,

\longrightarrow \left[\begin{array}{cc}2&-1\\1&1\end{array}\right]\,\left[\begin{array}{c}x&y\end{array}\right]=\left[\begin{array}{c}0&15\end{array}\right]

Method 1:- Matrix Inversion Method

Let,

  • A=\left[\begin{array}{cc}2&-1\\1&1\end{array}\right]

  • X=\left[\begin{array}{c}x&y\end{array}\right]

  • B=\left[\begin{array}{c}0&15\end{array}\right]

Then our equation becomes,

\longrightarrow A\cdot X=B\quad\quad\dots(3)

We can't divide by a matrix but we can multiply by its inverse.

Since order of A is 2\times2, so will be that of A^{-1}, whose no. of columns is equal to no. of rows of B, whose order is 2\times1.

We see no. of rows of A is not equal to no. of columns of B. Hence,

\longrightarrow X=A^{-1}\cdot B

Let's find A^{-1}.

\longrightarrow A^{-1}=\dfrac{1}{|A|}\,\left[\begin{array}{cc}1&1\\-1&2\end{array}\right]

\longrightarrow A^{-1}=\dfrac{1}{2-(-1)}\,\left[\begin{array}{cc}1&1\\-1&2\end{array}\right]

\longrightarrow A^{-1}=\dfrac{1}{3}\,\left[\begin{array}{cc}1&1\\-1&2\end{array}\right]

\longrightarrow A^{-1}=\left[\begin{array}{cc}\frac{1}{3}&\frac{1}{3}\\\\-\frac{1}{3}&\frac{2}{3}\end{array}\right]

Hence (3) becomes,

\longrightarrow \left[\begin{array}{c}x\\\\y\end{array}\right]=\left[\begin{array}{cc}\frac{1}{3}&\frac{1}{3}\\\\-\frac{1}{3}&\frac{2}{3}\end{array}\right]\cdot\left[\begin{array}{cc}0\\\\15\end{array}\right]

\longrightarrow \left[\begin{array}{c}x\\y\end{array}\right]=\left[\begin{array}{cc}5\\10\end{array}\right]

Therefore,

\longrightarrow\underline{\underline{x=5}}

\longrightarrow\underline{\underline{y=10}}

Method 2:- Application of Cramer's Rule

Cramer's rule states that, the solution to the matrix equation,

\longrightarrow \left[\begin{array}{cc}a&b\\p&q\end{array}\right]\cdot\left[\begin{array}{c}x&y\end{array}\right]=\left[\begin{array}{c}c\\r\end{array}\right]

is given by,

\longrightarrow x=\dfrac{\left|\begin{array}{cc}c&b\\r&q\end{array}\right|}{\left|\begin{array}{cc}a&b\\p&q\end{array}\right|}

\longrightarrow x=\dfrac{cq-br}{aq-bp}

and,

\longrightarrow y=\dfrac{\left|\begin{array}{cc}a&c\\p&r\end{array}\right|}{\left|\begin{array}{cc}a&b\\p&q\end{array}\right|}

\longrightarrow y=\dfrac{ar-cp}{aq-bp}

According to the question,

  • \left[\begin{array}{cc}a&b\\p&q\end{array}\right]=\left[\begin{array}{cc}2&-1\\1&1\end{array}\right]

  • \left[\begin{array}{c}c\\r\end{array}\right]=\left[\begin{array}{c}0\\15\end{array}\right]

So,

  • \left[\begin{array}{cc}c&b\\r&q\end{array}\right]=\left[\begin{array}{cc}0&-1\\15&1\end{array}\right]

And,

  • \left[\begin{array}{cc}a&c\\p&r\end{array}\right]=\left[\begin{array}{cc}2&0\\1&15\end{array}\right]

Hence,

\longrightarrow x=\dfrac{0\times1+1\times15}{2\times1+1\times1}

\longrightarrow x=\dfrac{0+15}{2+1}

\longrightarrow\underline{\underline{x=5}}

And,

\longrightarrow y=\dfrac{ar-cp}{aq-bp}

\longrightarrow y=\dfrac{2\times15-0\times1}{2\times1+1\times1}

\longrightarrow y=\dfrac{30-0}{2+1}

\longrightarrow\underline{\underline{y=10}}

Thus solved!

Similar questions