Math, asked by pritirajnayak21, 4 months ago

the length of an rectangle is twice its width if the perimeter of the rectangle is 66 cm find its length
A 11cm
B. 22cm
C. 33cm
D. 20cm​

Answers

Answered by Auяoяà
68

Given :

  • Length of rectangle is twice its width.
  • Perimeter of rectangle = 66 cm

To find :

  • The length of the rectangle.

Solution :

Let's assume the width of the rectangle as x

Then Length will be 2(x) = 2x

Now, We know that,

Perimeter (rectangle) = 2(length + breadth)

[ Width can also be said as breadth ]

Thus,

⇝ 66 = 2(2x + x)

⇝ 66 = 2(3x)

⇝ 66 = 6x

⇝ 66/6 = x

⇝ 11 = x

Therefore,

  • The width of the rectangle = 11 cm
  • Then, the length will be (2x) = 2×11 = 22 cm

Check

Perimeter of rectangle = 2(l + b)

• Putting the value :

↦ 66 = 2(11 + 22)

↦ 66 = 2 × 33

↦ 66 = 66

Thus, Both sides are equal/same.

Hence , Solution is checked !

Answered by Anonymous
8

Correct Question-:

  • The length of an rectangle is twice its width . If the Perimeter of the rectangle is 66 cm. Find its length.

AnswEr-:

  • \underline{\boxed{\star{\sf{\blue{ Length \:of\:Rectangle\:is\:  \: =\frak{22cm}\:.}}}}}

EXPLANATION-:

  •  \frak{Given \:\: -:} \begin{cases} \sf{The\:Perimeter \:of\:Rectangle\:\:is\:= \frak{66cm}} & \\\\ \sf{The\: length\: of \:a\: rectangle\: is\: twice\: its\: width .  }\end{cases} \\\\

  •  \frak{Given \:\: -:} \begin{cases} \sf{The\:Length \:of\:Rectangle.  }\end{cases} \\\\

Solution,

  •  \frak{Let's \:Assume \: -:} \begin{cases} \sf{The\:width\:of\:Rectangle\:\:be\:= \frak{x\:cm}} & \\\\ \sf{Then\:,   }& \\\\ \sf{Length \:of\:Rectangle\:is\:twice\:to\:it's\:Breadth= 2 × x = \frak{2x\:cm}   }\end{cases} \\\\

Then ,

  • \underline{\boxed{\star{\sf{\blue{ Perimeter _{(Rectangle)}\: = 2×(Length \:+ Breadth)\:.}}}}}

  •  \frak{Here \:\: -:} \begin{cases} \sf{The\:Perimeter \:of\:Rectangle\:\:is\:= \frak{66cm}}& \\\\ \sf{The\:width\:of\:Rectangle\:\:is\:= \frak{x\:cm}} & \\\\ \sf{Length \:of\:Rectangle\:is\: \frak{2x\:cm} }  \end{cases} \\\\

Now ,

  • \implies{\sf{\large {66cm \: = \: 2( x + 2x ) }}}
  • \implies{\sf{\large {66cm \: = \: 2( 3x ) }}}
  • \implies{\sf{\large {66cm \: = \: 6x }}}
  • or,
  • \implies{\sf{\large {6x \: = \: 66cm }}}
  • \implies{\sf{\large {x \: = \: \frac{66}{6} }}}
  • \implies{\sf{\large {x \: = \: 11 }}}

Therefore,

  • \underline{\boxed{\star{\sf{\blue{ x\: = \: 11\:.}}}}}

Now ,

  •  \frak{Putting \:x=11\: -:} \begin{cases}  \sf{The\:width\:of\:Rectangle\:\:is\:= x\:= 11cm} & \\\\ \sf{Length \:of\:Rectangle\:is\: 2x\:= 2×11 \: =22cm}  \end{cases} \\\\

Hence ,

  • \underline{\boxed{\star{\sf{\blue{ Length \:of\:Rectangle\:is\:  \: =\frak{22cm}\:.}}}}}

________________________________________

Verification

  • \underline{\boxed{\star{\sf{\blue{ Perimeter _{(Rectangle)}\: = 2×(Length \:+ Breadth)\:.}}}}}

  •  \frak{Here \:\: -:} \begin{cases} \sf{The\:Perimeter \:of\:Rectangle\:\:is\:= \frak{66cm}}& \\\\ \sf{The\:width\:of\:Rectangle\:\:is\:= \frak{11\:cm}} & \\\\ \sf{Length \:of\:Rectangle\:is\: \frak{22\:cm} }  \end{cases} \\\\

Now,

  • \implies{\sf{\large {66cm \: = \: 2( 11+22 ) }}}
  • \implies{\sf{\large {66cm \: = \: 2( 33 ) }}}
  • \implies{\sf{\large {66cm \: = \: 66cm }}}

Therefore,

  • \underline{\boxed{\star{\sf{\blue{ LHS\: = \: RHS\:.}}}}}
  • \underline{\boxed{\star{\sf{\blue{ Hence\:, \: Verified \:.}}}}}

_________________________________♡_____________________________

Similar questions