Math, asked by nanisai123, 1 year ago

the length of hypotenuse of isosceles right-angled triangle is 10 cm. find its perimeter. (use 2^1/2 = 1.414

Answers

Answered by EmadAhamed
9
↑ Here is your answer 
_____________________________________________________________
_____________________________________________________________

Two sides of an isosceles triangle are equal, so let those two sides be 'x'

The third side will be the hypotenuse,

x^2 + x^2 = 10^2

2x^2 = 100

x^2 = 50

x =  \sqrt{50} cm

Time to find the perimeter!

 \sqrt{50} +  \sqrt{50} + 10

= 24.1421356237
Attachments:
Answered by ayushik684
3

Answer:

25 cmsq.

Step-by-step explanation: in triangle ABC right angled at B,

                     let AB = BC = x

          so, by pythagorans theorm

            H sq. = P sq. + B sq.

             10 sq. = x sq. + x sq

             100 cm = 2x sq.

              100/2 = x sq.

                50 = x sq

               root under 50 = x

                    5root2 = x

 therefore,

           area of triangle ABC = 1/2 * b * h

                                             = 1/2 * x * x

                                             = 1/2 * 5root2 * 5root2

                                             = 1/2 * 50

                                             = 25 cmsq.

Similar questions