The length of the ears of any rhombus is 12 cm respectively. And 16 cm. If so, determine the arm length of the rhombus?
Answers
Answer:
Given:-
Diagonals of a Rhombus =12cm and 16cm
To find:-
Side of the Rhombus
Solution:-
As we know that in a Rhombus
- Substitute the values
Answer:
Answer:
Given:-
Diagonals of a Rhombus =12cm and 16cm
To find:-
Side of the Rhombus
Solution:-
\sf d_1=12cmd
1
=12cm
\sf d_2=16cmd
2
=16cm
As we know that in a Rhombus
\boxed{\sf Side_{(Rhombus)}=\dfrac {1}{2}\sqrt{d_1 ^2+d_2 ^2}}
Side
(Rhombus)
=
2
1
d
1
2
+d
2
2
Substitute the values
\begin{gathered}\\\qquad\quad\displaystyle\sf {:}\longrightarrow Side_{(Rhombus)}=\dfrac{1}{2}\sqrt {(12)^2+(16)^2}\end{gathered}
:⟶Side
(Rhombus)
=
2
1
(12)
2
+(16)
2
\begin{gathered}\\\qquad\quad\displaystyle\sf {:}\longrightarrow Side_{(Rhombus)}=\dfrac {1}{2}\sqrt {144+256}\end{gathered}
:⟶Side
(Rhombus)
=
2
1
144+256
\begin{gathered}\\\qquad\quad\displaystyle\sf {:}\longrightarrow Side_{(Rhombus)}=\dfrac {1}{2}\sqrt {300}\end{gathered}
:⟶Side
(Rhombus)
=
2
1
300
\begin{gathered}\\\qquad\quad\displaystyle\sf {:}\longrightarrow Side_{(Rhombus)}=\dfrac {1}{2}\times 17.32 \end{gathered}
:⟶Side
(Rhombus)
=
2
1
×17.32
\begin{gathered}\\\qquad\quad\displaystyle\sf {:}\longrightarrow Side_{(Rhombus)}=8.66 cm\end{gathered}
:⟶Side
(Rhombus)
=8.66cm
Step-by-step explanation:
please mark me as brainliest