The line y = x is tangent at (0,0) to a circle of radius 1. The centre of the circle is :
Answers
Answer:
equatio of cicle with radius =
′
1
′
(x−a)
2
+(y−b)
2
=1
(a,b)→center
given y=x is a target
slope of target =1
perpendicular distance from center to target radius target radius
⇒
1
2
+1
2
∣b−a∣
=1 equatio of target
⇒
2
∣b−a∣
=1 2(x−a)+2(y−b)y
′
=0
⇒
∣b−a∣=
2
⇒y
′
=
(Y−B)
(x−a)
Giveny
′
=1 At (x,y)=(0,0)
⇒1=−
b
a
⇒
b=−a
From (1) and (2)
(−a−a)=
2
a=
2
−1
a=
2
1
△b=
2
1
b=
2
−1
(a,b)=(
2
−1
,
2
1
)
∴(a,b)=(
2
1
,
2
−1
)