Math, asked by vikastuknayat, 11 months ago

The mean of following distribution is 25. If total frequency is 106 find the missing frequencies.
x 19 21 23 25 27 29 31
f 13 15 f1 18 16 f2 13

Answers

Answered by akathwal004
9

Step-by-step explanation:

hope this answer will be helpful

Attachments:
Answered by ashishks1912
9

The missing frequencies are f_1=16 and f_2=15

Step-by-step explanation:

Given that the mean of the following data is 25 and total frequency is 106

It can be written as \sum f=106

The given data is

x         f           fx

19       13                      247

21       15                       315

23      f_1                         23f_1

25      18                       450

27       16                       432

29      21f_1                      29f_2

31         13                       403

_______________________________

      \sum f=75+f_1+f_2    \sum fx=1847+23f_1+29f_2

__________________________________

\sum f=75+f_1+f_2=106 ( since \sum f=106 )

75+f_1+f_2=106

f_1+f_2=106-75

f_1+f_2=31\hfill (1)

Equation (1) implies that f_1=31-f_2

\sum fx=1847+23f_1+29f_2  

Mean=\frac{\sum fx}{\sum f}

25=\frac{1847+23f_1+29f_2}{75+f_1+f_2} ( since mean=25 given )

25(75+f_1+f_2)=1847+23(f_1)+29f_2

1875+25f_1+25f_2-1847-23f_1-29f_2=0

28+2f_1-4f_2=0

28+2(31-f_2)-4f_2=0

28+2(31)-2f_2-4f_2=0

28+62-2f_2-4f_2=0

-6f_2=-90

f_2=\frac{90}{6}

f_2=15

Substitute the value of f_2=15 in equation (1) we get

f_1+15=31

f_1=31-15

f_1=16

Therefore the missing frequencies are f_1=16 and f_2=15

Similar questions