The measures of the angles of △RST are given by the expressions in the table.
Angle Measure
R 31°
S (x+4)∘
T (3x+9)∘
Find the value of x. Then find the m∠S and m∠T.
Enter your answers in the boxes.
x =
m∠S=
4 º
m∠T=
5 º
Answers
Answered by
5
Enter your answers in the boxes.
x = 34°
m∠S= 38°
m∠T= 111°
Hope it was helpful
x = 34°
m∠S= 38°
m∠T= 111°
Hope it was helpful
TG123:
thank you!
Answered by
4
Solution :-
Given = m∠R = 31°
As we know that the sum of all three angles of a triangle equals to 180 degrees.
⇒ m∠R + m∠S + m∠T = 180°
⇒ 31° + (x + 4)° + (3x + 9)° = 180°
⇒ 31 + 4 + 9 + x + 3x = 180
⇒ 44 + 4x = 180
⇒ 4x = 180 - 44
⇒ 4x = 136
⇒ x = 136/4
⇒ x = 34°
m∠S = (x + 4)°
⇒ 34 + 4 = 38°
m∠T = (3x + 9)°
⇒ (3*34) + 9
⇒ 102 + 9 = 111°
So, m∠S = 38° and m∠T = 111°
Answer.
Given = m∠R = 31°
As we know that the sum of all three angles of a triangle equals to 180 degrees.
⇒ m∠R + m∠S + m∠T = 180°
⇒ 31° + (x + 4)° + (3x + 9)° = 180°
⇒ 31 + 4 + 9 + x + 3x = 180
⇒ 44 + 4x = 180
⇒ 4x = 180 - 44
⇒ 4x = 136
⇒ x = 136/4
⇒ x = 34°
m∠S = (x + 4)°
⇒ 34 + 4 = 38°
m∠T = (3x + 9)°
⇒ (3*34) + 9
⇒ 102 + 9 = 111°
So, m∠S = 38° and m∠T = 111°
Answer.
Similar questions